ترغب بنشر مسار تعليمي؟ اضغط هنا

The Higgs sector of supersymmetric theories and the implications for high-energy colliders

79   0   0.0 ( 0 )
 نشر من قبل Abdelhak Djouadi
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Abdelhak Djouadi




اسأل ChatGPT حول البحث

One of the main motivations for low energy supersymmetric theories is their ability to address the hierarchy and naturalness problems in the Higgs sector of the Standard Model. In these theories, at least two doublets of scalar fields are required to break the electroweak symmetry and to generate the masses of the elementary particles, resulting in a rather rich Higgs spectrum. The search for the Higgs bosons of Supersymmetry and the determination of their basic properties is one of the major goals of high--energy colliders and, in particular, the LHC which will soon start operation. We review the salient features of the Higgs sector of the Minimal Supersymmetric Standard Model and of some of its extensions and summarize the prospects for probing them at the LHC and at the future ILC.

قيم البحث

اقرأ أيضاً

We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the Minimal Supersymmetric Standard Model. We present analytical expressions for the relevant amplitudes, including both quark and squar k loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large $tan beta$, neutral Higgs boson pair production might even be observable in the $4 b$ final state during the next run of the Tevatron collider.
58 - John F. Gunion 2010
Recent data from CoGeNT and DAMA are roughly consistent with a very light dark matter particle with $msim 4-10gev$ and spin-independent cross section of order $sigma_{SI} sim (1-3)times 10^{-4}pb$. An important question is whether these observations are compatible with supersymmetric models obeying $Omega h^2sim 0.11$ without violating existing collider constraints and precision measurements. In this talk, I review the fact the the Minimal Supersymmetric Model allows insufficient flexibility to achieve such compatibility, basically because of the highly constrained nature of the MSSM Higgs sector in relation to LEP limits on Higgs bosons. I then outline the manner in which the more flexible Higgs sectors of the Next-to-Minimal Supersymmetric Model and an Extended Next-to-Minimal Supersymmetric Model allow large $sigma_{SI}$ and $Omega h^2sim 0.11$ at low LSP mass without violating LEP, Tevatron, BaBar and other experimental limits. The relationship of the required Higgs sectors to the NMSSM ideal-Higgs scenarios is discussed.
In this review, we discuss methods of parsing direct and indirect information from collider experiments regarding the Higgs boson and describe simple ways in which experimental likelihoods can be consistently reconstructed and interfaced with model p redictions in pertinent parameter spaces. Ultimately these methods are used to constrain a five-dimensional parameter space describing a model-independent framework for electroweak symmetry breaking. We review prevalent scenarios for extending the electroweak symmetry breaking sector relative to the Standard Model and emphasize their predictions for nonstandard Higgs phenomenology that could be observed in LHC data if naturalness is realized in particular ways. Specifically we identify how measurements of Higgs couplings can be used to imply the existence of new physics at particular scales within various contexts, highlighting some parameter spaces of interest in order to give examples of how the data surrounding the new state can most effectively be used to constrain specific models of weak scale physics.
66 - M.M. Muhlleitner 2001
In order to verify the Higgs mechanism experimentally, the Higgs self-couplings have to be probed. These couplings allow the reconstruction of the characteristic Higgs potential responsible for the electroweak symmetry breaking. The couplings are acc essible in a variety of multiple Higgs production processes. The theoretical analysis including the most relevant channels for the production of neutral Higgs boson pairs at high-energy and high-luminosity $e^+e^-$ linear colliders will be presented in this note.
72 - U. Baur 2009
Standard Model Higgs pair production at e^+e^- colliders has the capability to determine the Higgs boson self-coupling lambda. I present a detailed analysis of the e^+e^- -> ZHH and e^+e^- -> ubar u HH signal channels, and the relevant background pr ocesses, for future e^+e^- linear colliders with center of mass energies of sqrt{s}=0.5 TeV, 1 TeV, and 3 TeV. Special attention is given to the role non-resonant Feynman diagrams play, and the theoretical uncertainties of signal and background cross sections. I also derive quantitative sensitivity limits for lambda. I find that an e^+e^- collider with sqrt{s}=0.5 TeV can place meaningful bounds on lambda only if the Higgs boson mass is relatively close to its current lower limit. At an e^+e^- collider with sqrt{s}=1 TeV (3 TeV), lambda can be determined with a precision of 20-80% (10-20%) for integrated luminosities in the few ab^{-1} range and Higgs boson masses in the range m_H=120-180 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا