ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies of Neutrino-Electron Scattering at the Kuo-Sheng Reactor Neutrino Laboratory

95   0   0.0 ( 0 )
 نشر من قبل Muhammed Deniz
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies on electron antineutrino-electron elastic scattering were performed using a 200-kg CsI(Tl) scintillating crystal detector array at the Kuo-Sheng Nuclear Power Plant in Taiwan. The measured cross section of R(exp) = [1.00 +- 0.32(stat)]xR(SM) is consistent with the Standard Model expectation and the corresponding weak mixing angle derived is sin2T = 0.24 +- 0.05 (stat). The results are consistent with a destructive interference effect between neutral and charged-currents in this process. Limits on neutrino magnetic moment of mu(nu_(e)) < 2.0 x 10^(-10) mu_(B) at 90% confidence level and on electron antineutrino charge radius of r^(2) < (0.12 +- 2.07)x10^(-32) cm^2 were also derived.

قيم البحث

اقرأ أيضاً

71 - A. Sonay , M. Deniz , H. T. Wong 2018
We report in situ neutron background measurements at the Kuo-Sheng Reactor Neutrino Laboratory (KSNL) by a hybrid neutron detector (HND) with a data size of 33.8 days under identical shielding configurations as during the neutrino physics data taking . The HND consists of BC-501A liquid and BC-702 phosphor powder scintillation neutron detectors, which is sensitive to both fast and thermal neutrons, respectively. Neutron-induced events for the two channels are identified and differentiated by pulse shape analysis, such that background of both are simultaneously measured. The fast neutron fluxes are derived by an iterative unfolding algorithm. Neutron induced background in the germanium detector under the same fluxes, both due to cosmic-rays and ambient radioactivity, are derived and compared with the measurements. The results are valuable to background understanding of the neutrino data at the KSNL. In particular, neutron-induced background events due to ambient radioactivity as well as from reactor operation are negligible compared to intrinsic cosmogenic activity and ambient $gamma$-activity. The detector concept and analysis procedures are applicable to neutron background characterization in similar rare-event experiments.
We report results from searches of pseudoscalar and vector bosonic super-weakly interacting massive particles (super-WIMP) in the TEXONO experiment at the Kuo-Sheng Nuclear Power Station, using 314.15 kg days of data from $n$-type Point-Contact Germa nium detector. The super-WIMPs are absorbed and deposit total energy in the detector, such that the experimental signatures are spectral peaks corresponding to the super-WIMP mass. Measured data are compatible with the background model, and no significant excess of super-WIMP signals are observed. We derived new upper limits on couplings of electrons with the pseudoscalar and vector bosonic super-WIMPs in the sub-keV mass region, assuming they are the dominant contributions to the dark matter density of our galaxy.
Relativistic millicharged particles ($chi_q$) have been proposed in various extensions to the Standard Model of particle physics. We consider the scenarios where they are produced at nuclear reactor core and via interactions of cosmic-rays with the e arths atmosphere. Millicharged particles could also be candidates for dark matter, and become relativistic through acceleration by supernova explosion shock waves. The atomic ionization cross section of $chi_q$ with matter are derived with the equivalent photon approximation. Smoking-gun signatures with significant enhancement in the differential cross section are identified. New limits on the mass and charge of $chi_q$ are derived, using data taken with a point-contact germanium detector with 500g mass functioning at an energy threshold of 300~eV at the Kuo-Sheng Reactor Neutrino Laboratory.
59 - H. Furuta , Y. Fukuda , T. Hara 2011
We carried out a study of neutrino detection at the experimental fast reactor JOYO using a 0.76 tons gadolinium loaded liquid scintillator detector. The detector was set up on the ground level at 24.3m from the JOYO reactor core of 140MW thermal powe r. The measured neutrino event rate from reactor on-off comparison was 1.11pm1.24(stat.)pm0.46(syst.)events/day. Although the statistical significance of the measurement was not enough, the background in such a compact detector at the ground level was studied in detail and MC simulation was found to describe the data well. A study for improvement of the detector for future such experiments is also shown.
The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 meters) of a 1 MW TRI GA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5 to 20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا