ﻻ يوجد ملخص باللغة العربية
We present the results of near-infrared [Fe II] and H2 line imaging and spectroscopic observations of the supernova remnant 3C 396 using the Palomar 5 m Hale telescope. We detect long, filamentary [Fe II] emission delineating the inner edge of the radio emission in the western boundary of the remnant in imaging observations, together with a bright [Fe II] emission clump close to the remnant center. There appears to be faint, diffuse [Fe II] emission between the central clump and the western filamentary emission. The spectroscopic observations determine the expansion velocity of the central clump to be ~56 km/s. This is far smaller than the expansion velocity of 3C 396 obtained from X-ray observations, implying the inhomogeneity of the ambient medium. The electron number density of the [Fe II] emission gas is < 2,000 cm-3. The H2 line emission, on the other hand, lies slightly outside the filamentary [Fe II] emission in the western boundary, and forms a rather straight filament. We suggest that the [Fe II] emission represents dense clumps in the wind material from the red supergiant phase of a Type IIL/b progenitor of 3C 396 which have been swept up by the supernova remnant shocks. The H2 emission may represent either the boundary of a wind bubble produced during the main-sequence phase of the progenitor or molecular clumps left over inside the bubble. We propose that the near-infrared [Fe II] and H2 emission observed in several supernova remnants of Type IIL/b SNe likely has the same origin.
3C 396 is a composite supernova remnant (SNR), consisting of a central pulsar wind nebula (PWN) and a bright shell in the west, which is known to be interacting with molecular clouds (MCs). We present a study of X-ray emission from the shell and the
We have observed the supernova remnant 3C~396 in the microwave region using the Parkes 64-m telescope. Observations have been made at 8.4 GHz, 13.5 GHz, and 18.6 GHz and in polarisation at 21.5 GHz. We have used data from several other observatories,
We investigate properties of the interstellar medium (ISM) interacting with shocks around the Galactic supernova remnant IC443, using the results of near-infrared [FeII] and H2 line mapping with the IRSF/SIRIUS. In the present study, we newly perform
We present near-infrared (2.5 - 5.0 um) spectra of shocked H2 gas in the supernova remnant IC 443, obtained with the satellite AKARI. Three shocked clumps-known as B, C, and G-and one background region were observed, and only H2 emission lines were d
We present a long-exposure (~10 hr) image of the supernova (SN) remnant Cassiopeia A (Cas A) obtained with the UKIRT 3.8-m telescope using a narrow band filter centered at 1.644 um emission. The passband contains [Fe II] 1.644 um and [Si I] 1.645 um