ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the $Bto X(3872)(to D^{*0}bar D^0)K$ decay

141   0   0.0 ( 0 )
 نشر من قبل Nicolas Zwahlen
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of $Bto X(3872)K$ with X(3872) decaying to $D^{*0}bar D^0$ using a sample of 657 million $Bbar B$ pairs recorded at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. Both $D^{*0}to D^0gamma$ and $D^{*0}to D^0pi^0$ decay modes are used. We find a peak of $50.1^{+14.8}_{-11.1}$ events with a mass of $(3872.9^{+0.6 +0.4}_{-0.4 -0.5}){rm MeV}/c^2$, a width of $(3.9^{+2.8 +0.2}_{-1.4 -1.1}){rm MeV}/c^2$ and a product branching fraction ${cal B}(Bto X(3872)K)times{cal B}(X(3872)to D^{*0}bar D^0)=(0.80pm0.20pm0.10)times10^{-4}$, where the first errors are statistical and the second ones are systematic. The significance of the signal is $6.4sigma$. The difference between the fitted mass and the $D^{*0}bar D^0$ threshold is calculated to be $(1.1^{+0.6 +0.1}_{-0.4 -0.3}){rm MeV}/c^2$. We also obtain an upper limit on the product of branching fractions ${cal B}(Bto Y(3940)K)times{cal B}(Y(3940)to D^{*0}bar D^0)$ of $0.67times10^{-4}$ at 90% CL.



قيم البحث

اقرأ أيضاً

Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $mathrm{fb}^{-1}$ collected with the BESIII detector at $sqrt{s}=3.773 mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}to K^+ K_S^0 pi^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1pm2.6pm4.2)%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $mathcal{B}(D^+to K^+ K_S^0 pi^0)$ measured by BESIII, we obtain $mathcal{B}(D^+to K^*(892)^+ K_S^0)=(8.69pm0.40pm0.64pm0.51)times10^{-3}$, where the third uncertainty is due to the branching fraction $mathcal{B}(D^+to K^+ K_S^0 pi^0)$. The precision of this result is significantly improved compared to the previous measurement.
The first observation of the decay $bar{B}^0_s to D^0 K^{*0}$ using $pp$ data collected by the LHCb detector at a centre-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 36 pb$^{-1}$, is reported. A signal of $34.4 pm 6.8$ events is obtained and the absence of signal is rejected with a statistical significance of more than nine standard deviations. The $bar{B}^0_s to D^0 K^{*0}$ branching fraction is measured relative to that of $bar{B}^0 to D^0 rho^0$: $frac{{cal B}(bar{B}^0_s to D^0 K^{*0})}{{cal B}(bar{B}^0 to D^0 rho^0)} = 1.48 pm 0.34 pm 0.15 pm 0.12$, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the ratio of the $B^0$ and $B^0_s$ hadronisation fractions.
Using data collected by the fixed target Fermilab experiment FOCUS, we present several first measurements for the semileptonic decay $D^0 to bar{K}^0pi^-mu^+ u$. Using a model that includes a $bar{K}^0 pi^-$ S-wave component, we measure the form fact or ratios to be r_v= 1.706+-0.677+-0.342 and r_2= 0.912+-0.370+-0.104 and the S-wave amplitude to be A=0.347+-0.222+-0.053 GeV^-1. Finally, we measure the vector semileptonic branching ratio $frac{Gamma(D^0 to K^{*}(892){-}mu^+ u)}{Gamma(D^0 to bar{K}^0pi^-pi^+)}= 0.337+-0.034+-0.013.
The first observation of the $B_s^0 to overline{D}^0 K^+ K^-$ decay is reported, together with the most precise branching fraction measurement of the mode $B^0 to overline{D}^0 K^+ K^-$. The results are obtained from an analysis of $pp$ collision dat a corresponding to an integrated luminosity of $3.0~textrm{fb}^{-1}$. The data were collected with the LHCb detector at centre-of-mass energies of $7$ and $8$ TeV. The branching fraction of the $B^0 to overline{D}^0 K^+ K^-$ decay is measured relative to that of the decay $B^0 to overline{D}^0 pi^+ pi^-$ to be $$frac{mathcal{B}(B^0 to overline{D}^0 K^+ K^-)}{mathcal{B}(B^0 to overline{D}^0 pi^+ pi^-)} = (6.9 pm 0.4 pm 0.3)%,$$ where the first uncertainty is statistical and the second is systematic. The measured branching fraction of the $B_s^0 to overline{D}^0 K^+ K^-$ decay mode relative to that of the corresponding $B^0$ decay is $$frac{mathcal{B}(B_s^0 to overline{D}^0 K^+ K^-)}{mathcal{B}(B^0 to overline{D}^0 K^+ K^-)} = (93.0 pm 8.9 pm 6.9)%.$$ Using the known branching fraction of ${B^0 to overline{D}^0 pi^+ pi^-}$, the values of ${{mathcal B}(B^0 to overline{D}^0 K^+ K^- )=(6.1 pm 0.4 pm 0.3 pm 0.3) times 10^{-5}}$, and ${{cal B}(B_s^0 to overline{D}^0 K^+ K^-)=}$ $(5.7 pm 0.5 pm 0.4 pm 0.5) times 10^{-5}$ are obtained, where the third uncertainties arise from the branching fraction of the decay modes ${B^0 to overline{D}^0 pi^+ pi^-}$ and $B^0 to overline{D}^0 K^+ K^-$, respectively.
We present the results of a Dalitz plot analysis of D^0 to K^0_S pi^0 pi^0 using the CLEO-c data set of 818 inverse pico-barns of e^+ e^- collisions accumulated at sqrt{s} = 3.77 GeV. This corresponds to three million D^0 D^0-bar pairs from which we select 1,259 tagged candidates with a background of 7.5 +- 0.9 percent. Several models have been explored, all of which include the K^*(892), K^*_2(1430), K^*(1680), the f_0(980), and the sigma(500). We find that the combined pi^0 pi^0 S-wave contribution to our preferred fit is (28.9 +- 6.3 +- 3.1)% of the total decay rate while D^0 to K^*(892)^0 pi^0 contributes (65.6 +- 5.3 +- 2.5)%. Using three tag modes and correcting for quantum correlations we measure the D^0 to K^0_S pi^0 pi^0 branching fraction to be (1.059 +- 0.038 +- 0.061)%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا