ﻻ يوجد ملخص باللغة العربية
We consider nonlinear hyperbolic conservation laws, posed on a differential (n+1)-manifold with boundary referred to as a spacetime, and in which the flux is defined as a flux field of n-forms depending on a parameter (the unknown variable). We introduce a formulation of the initial and boundary value problem which is geometric in nature and is more natural than the vector field approach recently developed for Riemannian manifolds. Our main assumption on the manifold and the flux field is a global hyperbolicity condition, which provides a global time-orientation as is standard in Lorentzian geometry and general relativity. Assuming that the manifold admits a foliation by compact slices, we establish the existence of a semi-group of entropy solutions. Moreover, given any two hypersurfaces with one lying in the future of the other, we establish a contraction property which compares two entropy solutions, in a (geometrically natural) distance equivalent to the L1 distance. To carry out the proofs, we rely on a new version of the finite volume method, which only requires the knowledge of the given n-volume form structure on the (n+1)-manifold and involves the {sl total flux} across faces of the elements of the triangulations, only, rather than the product of a numerical flux times the measure of that face.
We consider entropy solutions to the initial value problem associated with scalar nonlinear hyperbolic conservation laws posed on the two-dimensional sphere. We propose a finite volume scheme which relies on a web-like mesh made of segments of longit
We introduce a formulation of the initial and boundary value problem for nonlinear hyperbolic conservation laws posed on a differential manifold endowed with a volume form, possibly with a boundary; in particular, this includes the important case of
In this paper, we propose a hybrid finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for solving one and two dimensional hyperbolic conservation laws. The zeroth-order and the first-order moments are used in the spatial recons
We consider a class of multidimensional conservation laws with vanishing nonlinear diffusion and dispersion terms. Under a condition on the relative size of the diffusion and dispersion coefficients, we establish that the diffusive-dispersive solutio
In this paper using a Clifford bundle formalism we examine (a): the strong conditions for existence of conservation laws involving only the energy-momentum and angular momentum of the matter fields on a general Riemann-Cartan spacetime and also in th