ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the blazar spectral sequence: X-ray selected blazars

57   0   0.0 ( 0 )
 نشر من قبل Fabrizio Tavecchio
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present simultaneous optical and X-ray data from Swift for a sample of FSRQs selected from the EMSS survey. We present also a complete analysis of Swift and INTEGRAL data on 4 blazars recently discussed as possibly challenging the trends of the blazar spectral sequence. The SEDs of all these objects are modelled in terms of a general theoretical scheme leading to an estimate of the jets physical parameters. Our results show that, in the case of the EMSS broad line blazars, X-ray selection does not lead to find sources with synchrotron peaks in the UV/X-ray range, as was the case for X-ray selected BL Lacs. Instead, for a wide range of radio powers all the sources with broad emission lines show similar SEDs, with synchrotron components peaking below the optical/UV range. Of the remaining 4 anomalous blazars, two highly luminous sources with broad lines, claimed to possibly emit synchrotron X-rays, are shown to be better described with IC models for their X-ray emission. For one source with weak emission lines (a BL Lac object) a synchrotron peak in the soft X-ray range is confirmed, while for the fourth source, exhibiting lines typical of NLSy1s, no evidence of X-ray emission from a relativistic jet is found. We reexamine the original blazar spectral sequence and suggest that the photon ambient, in which the particle acceleration and emission occur, is likely the main factor determining the shape of the blazar SED.



قيم البحث

اقرأ أيضاً

This work is a summary of the X-ray spectral studies of 29 TeV $gamma$-ray emitting blazars observed with Swift/XRT, especially focusing on sources for which X-ray regime allows to study the low and the high energy ends of the particle distributions function. Variability studies require simultaneous coverage, ideally sampling different flux states of each source. This is achieved using X-ray observations by disentangling the high-energy end of the synchrotron emission and the low-energy end of the Compton emission, which are produced by the same electron population. We focused on a sample of 29 TeV gamma-ray emitting blazars with the best signal-to-noise X-ray observations collected with Swift/XRT in the energy range of 0.3-10 keV during 10 years of Swift/XRT operations. We investigate the X-ray spectral shapes and the effects of different corrections for neutral hydrogen absorption and decompose the synchrotron and inverse Compton components. In the case of 5 sources (3C 66A, S5 0716+714, W Comae, 4C +21.35 and BL Lacertae) a superposition of both components is observed in the X-ray band, permitting simultaneous, time resolved studies of both ends of the electron distribution. The analysis of multi-epoch observations revealed that the break energy of X-ray spectrum varies only by a small factor with flux changes. Flux variability is more pronounced in the synchrotron domain (high-energy end of the electron distribution) than in the Compton domain (low energy end of the electron distribution). The spectral shape of the Compton domain is stable, while the flux of the synchrotron domain is variable. These changes cannot be described by simple variations of the cut-off energy, suggesting that the high-energy end of the electron distribution is not generally well-described by cooling only.
In a previous paper, we proposed a new method to select low-power BL Lacs (LPBLs) based on mid-infrared emission and flux contrast through the Ca II spectral break; that study led to the selection of a complete sample formed by 34 LPBLs with 0.05<z<= 0.15 and radio luminosities spanning the range log(L_r) = 39.2-41.5 [erg/s]. We now assemble the broadband spectral energy distributions (SEDs) of these sources to investigate their nature and compare them with brighter BL Lacs. We find that the ratios between the X-ray and radio luminosities range from ~20 to ~30000 and that the synchrotron peak frequencies span a wide energy interval, from log(nu_peak)~13.5 to ~20 [Hz]. This indicates a broad variety of SED shapes and a mixture of BL Lac flavors. Indeed, although the majority of our LPBLs are high-energy peaked BL Lacs (HBLs), we find that a quarter of them are low-energy peaked BL Lacs (LBLs), despite the fact that the sample is biased against the selection of LBLs. The analysis of the median LPBL SED confirms disagreement with the blazar sequence at low radio luminosities. Furthermore, if we limit the sample to the LBLs subsample, we find that their median SED shape is essentially indistinguishable from that of the most luminous BL Lacs. We conclude that the observed radio power is not the main driving parameter of the multiwavelength properties of BL Lacs.
We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands. Our unique data set has allowed us to demonstrate that the selection m ethod strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi-LAT, whereas ~40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-mm spectral slope of blazars is quite flat up to ~70GHz, above which it steepens to <alpha>~-0.65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency ( upS) in the SED of FSRQs is the same in all the blazar samples with < upS>=10^13.1 Hz, while the mean inverse-Compton peak frequency, < upIC>, ranges from 10^21 to 10^22 Hz. The distributions of upS and of upIC of BL Lacs are much broader and are shifted to higher energies than those of FSRQs and strongly depend on the selection method. The Compton dominance of blazars ranges from ~0.2 to ~100, with only FSRQs reaching values >3. Its distribution is broad and depends strongly on the selection method, with gamma-ray selected blazars peaking at ~7 or more, and radio-selected blazars at values ~1, thus implying that the assumption that the blazar power is dominated by high-energy emission is a selection effect. Simple SSC models cannot explain the SEDs of most of the gamma-ray detected blazars in all samples. The SED of the blazars that were not detected by Fermi-LAT may instead be consistent with SSC emission. Our data challenge the correlation between bolometric luminosity and upS predicted by the blazar sequence.
81 - Paolo Ciliegi 1996
Using a sample of 63 AGNs extracted from the $Einstein$ Extended Medium Sensitivity Survey (EMSS), we study the X-ray spectral properties of X-ray selected AGN in the 0.1$-$2.4 keV ROSAT band. These objects are all the EMSS AGN detected with more tha n 300 net counts in ROSAT PSPC images available from the public archive (as of May 31, 1995). A Maximum-Likelihood analysis is used to find the mean power-law spectral index $<alpha_p>$ and the intrinsic dispersion $sigma_p$. We find $<alpha_p>$=1.42 with $sigma_p$=0.44. This value is significantly steeper ($Delta alpha sim$0.4) than the mean $Einstein$/IPC spectral index obtained applying the ML analysis on the whole sample of EMSS AGN. This result shows that the soft excess already noted in optically selected AGN is present also in X-ray selected AGN. The relatively high value obtained for the intrinsic dispersion confirms that in the soft band AGN are characterized by a variety of spectral indices and the increase with respect to results obtained from the analysis of Einstein data ($Delta sigma_p sim$0.16) suggests a further broadening of the spectral index distribution as one moves to softer energies. A comparison between the mean spectral index of Radio-quiet and Radio-loud subsamples shows that the mean index of the RL sample is flatter than that of RQ, both in the IPC ($Delta alpha sim$0.3) and in the PSPC ($Delta alpha sim$0.4) data. This suggests that the additional X-ray component in RL AGN dominates the X-ray emission of RL AGN over almost two decades of energy ($sim$0.1$-$10 keV).
We use the third catalog of blazars detected by Fermi/LAT (3LAC) and gamma-ray Narrow-line Seyfert 1 Galaxies (gamma-NLSy1s) to study the blazar sequence and relationship between them. Our results are as follows: (i) There is a weak anti-correlation between synchrotron peak frequency and peak luminosity for both Fermi blazars and gamma-NLSy1s, which supports the blazar sequence. However, after Doppler correction, the inverse correlation disappeared, which suggests that anti-correlation between synchrotron peak frequency and peak luminosity is affected by the beaming effect. (ii) There is a significant anti-correlation between jet kinetic power and synchrotron peak frequency for both Fermi blazars and gamma-NLSy1s, which suggests that the gamma-NLSy1s could fit well into the original blazar sequence. (iii) According to previous work, the relationship between synchrotron peak frequency and synchrotron curvature can be explained by statistical or stochastic acceleration mechanisms. There are significant correlations between synchrotron peak frequency and synchrotron curvature for whole sample, Fermi blazars and BL Lacs, respectively. The slopes of the correlation are consistent with statistical acceleration. For FSRQs, LBLs, IBLs, HBLs, and gamma-NLS1s, we also find a significant correlation, but in these cases the slopes can not be explained by previous theoretical models. (iv) The slope of relation between synchrotron peak frequency and synchrotron curvature in gamma-NLS1s is large than that of FSRQs and BL Lacs. This result may imply that the cooling dominates over the acceleration process for FSRQs and BL Lacs, while gamma-NLS1s is the opposite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا