ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene

142   0   0.0 ( 0 )
 نشر من قبل Petr Khomyakov A.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The in-plane lattice constants of close-packed planes of fcc and hcp Ni and Co match that of graphite almost perfectly so that they share a common two dimensional reciprocal space. Their electronic structures are such that they overlap in this reciprocal space for one spin direction only allowing us to predict perfect spin filtering for interfaces between graphite and (111) fcc or (0001) hcp Ni or Co. First-principles calculations of the scattering matrix show that the spin filtering is quite insensitive to amounts of interface roughness and disorder which drastically influence the spin-filtering properties of conventional magnetic tunnel junctions or interfaces between transition metals and semiconductors. When a single graphene sheet is adsorbed on these open $d$-shell transition metal surfaces, its characteristic electronic structure, with topological singularities at the K points in the two dimensional Brillouin zone, is destroyed by the chemical bonding. Because graphene bonds only weakly to Cu which has no states at the Fermi energy at the K point for either spin, the electronic structure of graphene can be restored by dusting Ni or Co with one or a few monolayers of Cu while still preserving the ideal spin injection property.



قيم البحث

اقرأ أيضاً

Based upon the observations (i) that their in-plane lattice constants match almost perfectly and (ii) that their electronic structures overlap in reciprocal space for one spin direction only, we predict perfect spin filtering for interfaces between g raphite and (111) fcc or (0001) hcp Ni or Co. The spin filtering is quite insensitive to roughness and disorder. The formation of a chemical bond between graphite and the open $d$-shell transition metals that might complicate or even prevent spin injection into a single graphene sheet can be simply prevented by dusting Ni or Co with one or a few monolayers of Cu while still preserving the ideal spin injection property.
The existed theories and methods for calculating interfacial thermal conductance of solid-solid interface lead to diverse values that deviate from experimental measurements. In this letter, We propose a model to estimate the ITC at high temperature w ithout comprehensive calculations, where the interface between two dissimilar solids can be treated as an amorphous thin layer and the coordination number density across interface becomes a key parameter. Our model predicts that the ITCs of various interfaces at 300K are in a narrow range: 10$^{7}$W m$^{-2}$K$^{-1}$ $sim $10$^{9}$ W m$^{-2}$ K$^{-1}$, which is in good agreement with the experimental measurement.
152 - S. Cahangirov , S. Ciraci , 2013
A single graphene layer placed between two parallel Ni(111) surfaces screens the strong attractive force and results in a significant reduction of adhesion and sliding friction. When two graphene layers are inserted, each graphene is attached to one of the metal surfaces with a significant binding and reduces the adhesion further. In the sliding motion of these surfaces the transition from stick-slip to continuous sliding is attained, whereby non-equilibrium phonon generation through sudden processes is suppressed. The adhesion and corrugation strength continues to decrease upon insertion of the third graphene layer and eventually saturates at a constant value with increasing number of graphene layers. In the absence of Ni surfaces, the corrugation strength of multilayered graphene is relatively higher and practically independent of the number of layers. Present first-principles calculations reveal the superlubricant feature of graphene layers placed between pseudomorphic Ni(111) surfaces, which is achieved through the coupling of Ni-3d and graphene-$pi$ orbitals. The effect of graphene layers inserted between a pair of parallel Cu(111) and Al(111) surfaces are also discussed. The treatment of sliding friction under the constant loading force, by taking into account the deformations corresponding to any relative positions of sliding slabs, is the unique feature of our study.
The present manuscript considers the application of the method of the near-edge X-ray absorption spectroscopy (NEXAFS) for the investigation of the graphene-based systems (from free-standing graphene to the metal-intercalation-like systems). The NEXA FS spectra for the selected systems are calculated in the framework of the approach, which includes the effects of the dynamic core-hole screening. The presented spectral changes from system to system are analysed with the help of the corresponding band-structure calculations. The obtained results are compared with available experimental data demonstrating the excellent agreement between theory and experiment. The direct correlation between the strength of the graphene interaction with the metallic substrate and the spectral distributions (shape and intensities of pi* and sigma* features in the C K NEXAFS spectra) is found that can be taken as a fingerprint for the description of interaction at the graphene/metal interface.
Ferromagnetic/metallic manganese perovskites, such as La2/3Sr1/3MnO3 (LSMO)are promising materials for the design and implementation of novel spintronic devices working at room temperature. However, their implementation in practical applications has been severely hampered due to the breakdown of their magnetotransport properties at temperatures well below their magnetic transition temperature. This breakdown has been usually associated to surface and interface related problems but its physical origin has not been clearly established yet. In this work we investigate the interface between La2/3Sr1/3MnO3 (LSMO) thin films and different capping layers by means of x-ray linear dichroism and transport measurements. Our data reveal that, irrespective to the capping material, LSMO/capping layer bilayers exhibit an antiferromegnetic/insulating phase at the interface, likely to originate from a preferential occupancy of Mn 3d 3z2-r2 eg orbitals. This phase, which extends ca. 2 unit cells, is also observed in an uncapped LSMO reference sample thus, pointing to an intrinsic interfacial phase separation phenomenon, likely to be promoted by the structural disruption and symmetry breaking at the LSMO free surface/interface. These experimental observations strongly suggest that the structural disruption at the LSMO interfaces play a major role on the observed depressed magnetotransport properties in manganite-based magnetic tunneling junctions and it is at the origin of the so-called dead layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا