ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Extreme Carbon Stars in the Large Magellanic Cloud

147   0   0.0 ( 0 )
 نشر من قبل Robert A. Gruendl
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Spitzer IRAC and MIPS observations of the Large Magellanic Cloud, we have identified 13 objects that have extremely red mid-IR colors. Follow-up Spitzer IRS observations of seven of these sources reveal varying amounts of SiC and C2H2 absorption as well as the presence of a broad MgS feature in at least two cases, indicating that these are extreme carbon stars. Preliminary estimates find these objects have luminosities of 4-11x10^3 Lsol and preliminary model fitting gives mass-loss rates between 4x10^-5 and 2x10^-4 Msol/yr, higher than any known carbon-rich AGB star in the LMC. These spectral and physical properties require careful reconsideration of dust condensation and mass-loss processes for carbon stars in low metallicity environments.



قيم البحث

اقرأ أيضاً

We investigate the molecular bands in carbon-rich AGB stars in the Large Magellanic Cloud (LMC), using the InfraRed Spectrograph (IRS) on board the Spitzer Space Telescope (SST) over the 5--38 micron range. All 26 low-resolution spectra show acetylen e (C2H2) bands at 7 and 14 micron. The hydrogen cyanide (HCN) bands at these wavelengths are very weak or absent. This is consistent with low nitrogen abundances in the LMC. The observed 14 micron C2H2 band is reasonably reproduced by an excitation temperature of 500 K. There is no clear dilution of the 14 micron band by circumstellar dust emission. This 14 micron band originates from molecular gas in the circumstellar envelope in these high mass-loss rate stars, in agreement with previous findings for Galactic stars. The C2H2,column density, derived from the 13.7 micron band, shows a gas mass-loss rate in the range 3x10^-6 to 5x10^{-5} Msun yr-1. This is comparable with the total mass-loss rate of these stars estimated from the spectral energy distribution. Additionally, we compare the line strengths of the 13.7 micron C2H2 band of our LMC sample with those of a Galactic sample. Despite the low metallicity of the LMC, there is no clear difference in the C2H2 abundance among LMC and Galactic stars. This reflects the effect of the 3rd dredge-up bringing self-produced carbon to the surface, leading to high C/O ratios at low metallicity.
The Optical Gravitational Lensing Experiment identified over 1,800 carbon-rich Mira and semi-regular variables in the Small Magellanic Cloud. Multi-epoch infrared photometry reveals that the semi-regulars and Miras follow different sequences in color -color space when using colors sensitive to molecular absorption bands. The dustiest Miras have the strongest pulsation amplitudes and longest periods. Efforts to determine bolometric magnitudes reveal possible systematic errors with published bolometric corrections.
The kinematics of 150 carbon stars observed at moderate dispersion on the periphery of the Small Magellanic Cloud are compared with the motions of neutral hydrogen and early type stars in the Inter-Cloud region. The distribution of radial velocities implies a configuration of these stars as a sheet inclined at 73+/-4 degrees to the plane of the sky. The near side, to the South, is dominated by a stellar component; to the North, the far side contains fewer carbon stars, and is dominated by the neutral gas. The upper velocity envelope of the stars is closely the same as that of the gas. This configuration is shown to be consistent with the known extension of the SMC along the line of sight, and is attributed to a tidally induced disruption of the SMC that originated in a close encounter with the LMC some 0.3 to 0.4 Gyr ago. The dearth of gas on the near side of the sheet is attributed to ablation processes akin to those inferred by Weiner & Williams (1996) to collisional excitation of the leading edges of Magellanic Stream clouds. Comparison with pre LMC/SMC encounter kinematic data of Hardy, Suntzeff, & Azzopardi (1989) of carbon stars, with data of stars formed after the encounter, of Maurice et al. (1989), and Mathewson et al. (a986, 1988) leaves little doubt that forces other than gravity play a role in the dynamics of the H I.
The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (~100 km/s) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birth places at the very beginning of their parent clusters dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach however is complicated by the large distance to the LMC, which makes accurate proper motion measurements difficult. We use an alternative approach for solving the problem, based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion and thereby to determine their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars which were suggested in the literature as candidate runaway stars. Using archival (Spitzer Space Telescope) data, we found a bow shock associated with one of our program stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ~120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star forming complex.
We present the discovery of nine quasars behind the Large Magellanic Cloud, with emission redshifts ranging from 0.07 to 2.0. Six of them were identified as part of the systematic variability-based search for QSOs in the objects from the OGLE-II data base. Combination of variability-based selection of candidates with the candidates colours appears to be a powerful technique for identifying quasars, potentially reaching ca. 50% efficiency. We report an apparent correlation between variability magnitude and variability timescale, which - if confirmed - could put even more constraints on QSO candidate selection. The remaining three quasars were identified via followup spectroscopy of optical counterparts to X-ray sources found serendipitously by the Chandra X-ray Observatory satellite. Even though the locations of the candidates were quite uniformly distributed over the LMC bar, the confirmed QSOs all appear near the bars outskirts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا