ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of a Self-Similar Pressure Profile to Sunyaev-Zeldovich Effect Data from Galaxy Clusters

378   0   0.0 ( 0 )
 نشر من قبل Tony Mroczkowski
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the utility of a new, self-similar pressure profile for fitting Sunyaev-Zeldovich (SZ) effect observations of galaxy clusters. Current SZ imaging instruments - such as the Sunyaev-Zeldovich Array (SZA) - are capable of probing clusters over a large range in physical scale. A model is therefore required that can accurately describe a clusters pressure profile over a broad range of radii, from the core of the cluster out to a significant fraction of the virial radius. In the analysis presented here, we fit a radial pressure profile derived from simulations and detailed X-ray analysis of relaxed clusters to SZA observations of three clusters with exceptionally high quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis of the SZ and X-ray data, we derive physical properties such as gas mass, total mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find that parameters derived from the joint fit to the SZ and X-ray data agree well with a detailed, independent X-ray-only analysis of the same clusters. In particular, we find that, when combined with X-ray imaging data, this new pressure profile yields an independent electron radial temperature profile that is in good agreement with spectroscopic X-ray measurements.

قيم البحث

اقرأ أيضاً

Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3 x R500, i.e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole radial range. Our measurement is fully consistent with previous Planck results on integrated SZ fluxes, further strengthening the agreement between SZ and X-ray measurements inside R500. Correcting for the effects of the Planck beam, we have calculated the corresponding pressure profiles. This new constraint from SZ measurements is consistent with the X-ray constraints from XMM-Newton in the region in which the profiles overlap (i.e., [0.1-1]R500), and is in fairly good agreement with theoretical predictions within the expected dispersion. At larger radii the average pressure profile is slightly flatter than most predictions from numerical simulations. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P0, c500, gamma, alpha, beta] = [6.41, 1.81, 0.31, 1.33, 4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts we reconstruct from our stacked pressure profile the gas mass fraction profile out to 3 x R500. Within the temperature driven uncertainties, our Planck constraints are compatible with the cosmic baryon fraction and expected gas fraction in halos.
370 - D. Puy , L. Grenacher 2000
In this paper we investigate the Sunyaev-Zeldovich (SZ) effect and the X-ray surface brightness for clusters of galaxies with a non-spherical mass distribution. In particular, we consider the influence of the shape and the finite extension of a clust er as well as of a polytropic thermal profile on the Compton parameter, the X-ray surface brightness and on the determination of the Hubble constant. We find that the the non-inclusion of such effects can induce errors up to 30 per cent in the various parameters and in particular on the Hubble constant value, when compared with results obtained under the isothermal, infinitely extended and spherical shape assumptions.
Observations of the X-ray band wavelength reveal an evident ellipticity of many galaxy clusters atmospheres. The modeling of the intracluster gas with an ellipsoidal $beta$-model leads to different estimates for the total gravitational mass and the g as mass fraction of the cluster than those one finds for a spherical beta-model. An analysis of a recent Chandra image of the galaxy cluster RBS797 indicates a strong ellipticity and thus a pronounced aspherical geometry. A preliminary investigation which takes into account an ellipsoidal shape for this cluster gives different mass estimates than by assuming spherical symmetry. We have also investigated the influence of aspherical geometries of galaxy clusters, and of polytropic profiles of the temperature on the estimate of the Hubble constant through the Sunyaev-Zeldovich effect. We find that the non-inclusion of such effects can induce errors up to 40 per cent on the Hubble constant value.
We investigate the influence of the finite extension and the aspherical geometry of a galaxy cluster on the estimate of the Hubble constant through the Sunyaev-Zeldovich effect. An analysis of a recent CHANDRA image of the galaxy cluster RBS797 indic ates a strong ellipticity and thus a pronounced aspherical geometry. We estimate the total mass of RBS797 assuming spherical or ellipsoidal geometry and show that in the latter case the mass is about 10-17 % less than the one inferred for a spherical shape.
The South Pole Telescope (SPT) is conducting a Sunyaev-Zeldovich (SZ) effect survey over large areas of the southern sky, searching for massive galaxy clusters to high redshift. In this preliminary study, we focus on a 40 square-degree area targeted by the Blanco Cosmology Survey (BCS), which is centered roughly at right ascension 5h30m, declination -53 degrees. Over two seasons of observations, this entire region has been mapped by the SPT at 95 GHz, 150 GHz, and 225 GHz. We report the four most significant SPT detections of SZ clusters in this field, three of which were previously unknown and, therefore, represent the first galaxy clusters discovered with an SZ survey. The SZ clusters are detected as decrements with greater than 5-sigma significance in the high-sensitivity 150 GHz SPT map. The SZ spectrum of these sources is confirmed by detections of decrements at the corresponding locations in the 95 GHz SPT map and non-detections at those locations in the 225 GHz SPT map. Multiband optical images from the BCS survey demonstrate significant concentrations of similarly colored galaxies at the positions of the SZ detections. Photometric redshift estimates from the BCS data indicate that two of the clusters lie at moderate redshift (z ~ 0.4) and two at high redshift (z >~ 0.8). One of the SZ detections was previously identified as a galaxy cluster using X-ray data from the ROSAT All-Sky Survey (RASS). Potential RASS counterparts (not previously identified as clusters) are also found for two of the new discoveries. These first four galaxy clusters are the most significant SZ detections from a subset of the ongoing SPT survey. As such, they serve as a demonstration that SZ surveys, and the SPT in particular, can be an effective means for finding galaxy clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا