ﻻ يوجد ملخص باللغة العربية
We introduce a new CMB temperature likelihood approximation called the Gaussianized Blackwell-Rao (GBR) estimator. This estimator is derived by transforming the observed marginal power spectrum distributions obtained by the CMB Gibbs sampler into standard univariate Gaussians, and then approximate their joint transformed distribution by a multivariate Gaussian. The method is exact for full-sky coverage and uniform noise, and an excellent approximation for sky cuts and scanning patterns relevant for modern satellite experiments such as WMAP and Planck. A single evaluation of this estimator between l=2 and 200 takes ~0.2 CPU milliseconds, while for comparison, a single pixel space likelihood evaluation between l=2 and 30 for a map with ~2500 pixels requires ~20 seconds. We apply this tool to the 5-year WMAP temperature data, and re-estimate the angular temperature power spectrum, $C_{ell}$, and likelihood, L(C_l), for l<=200, and derive new cosmological parameters for the standard six-parameter LambdaCDM model. Our spectrum is in excellent agreement with the official WMAP spectrum, but we find slight differences in the derived cosmological parameters. Most importantly, the spectral index of scalar perturbations is n_s=0.973 +/- 0.014, 1.9 sigma away from unity and 0.6 sigma higher than the official WMAP result, n_s = 0.965 +/- 0.014. This suggests that an exact likelihood treatment is required to higher ls than previously believed, reinforcing and extending our conclusions from the 3-year WMAP analysis. In that case, we found that the sub-optimal likelihood approximation adopted between l=12 and 30 by the WMAP team biased n_s low by 0.4 sigma, while here we find that the same approximation between l=30 and 200 introduces a bias of 0.6 sigma in n_s.
We propose an efficient Bayesian MCMC algorithm for estimating cosmological parameters from CMB data without use of likelihood approximations. It builds on a previously developed Gibbs sampling framework that allows for exploration of the joint CMB s
We present ECLIPSE (Efficient Cmb poLarization and Intensity Power Spectra Estimator), an optimized implementation of the Quadratic Maximum Likelihood (QML) method for the estimation of the power spectra of the Cosmic Microwave Background (CMB). This
The maximum likelihood estimator plays a fundamental role in statistics. However, for many models, the estimators do not have closed-form expressions. This limitation can be significant in situations where estimates and predictions need to be compute
We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise
A great deal of experimental effort is currently being devoted to the precise measurements of the cosmic microwave background (CMB) sky in temperature and polarisation. Satellites, balloon-borne, and ground-based experiments scrutinize the CMB sky at