ﻻ يوجد ملخص باللغة العربية
We report measurements of the phonon density-of-states in iron oxypnictide superconductors by inelastic x-ray scattering. A good agreement with ab-initio calculations that do not take into account strong electronic correlations is found, and an unpredicted softening of phonon branches under F doping of these compounds is observed. Raman scattering experiments lead us to conclude that this softening is not related to zone center phonons, and consequently imply an important softening of the relevant phonon branches at finite momentum transfer Q.
We investigated the temperature dependence of the density-of-states in the iron-based superconductor SmO_1-xF_xFeAs (x=0, 0.12, 0.15, 0.2) with high resolution angle-integrated photoemission spectroscopy. The density-of-states suppression is observed
The interplay between different ordered phases, such as superconducting, charge or spin ordered phases, is of central interest in condensed matter physics. The very recent discovery of superconductivity with a remarkable T$_c$= 26 K in Fe-based oxypn
Using state-of-the-art first-principles calculations we study the magnetic behaviour of CeOFeAs. We find the Ce layer moments oriented perpendicular to those of the Fe layers. An analysis of incommensurate magnetic structures reveals that the Ce-Ce m
Raman spectra have been measured on iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs with varying fluorine doping at room temperatures. A group analysis has been made to clarify the optical modes. Based on the first principle calcu
We report far-infrared reflectance measurements on polycrystalline superconducting samples of SmO$_{1-x}$F$_{x}$FeAs ($x$ = 0.12, 0.15 and 0.2). We clearly observe superconductivity induced changes of reflectivity in a broad range of energies, which