ﻻ يوجد ملخص باللغة العربية
A doped graphene layer in the integer quantum Hall regime reveals a highly unusual particle-hole excitation spectrum, which is calculated from the dynamical polarizability in the random phase approximation. We find that the elementary neutral excitations in graphene in a magnetic field are unlike those of a standard two-dimensional electron gas (2DEG): in addition to the upper-hybrid mode, the particle-hole spectrum is reorganized in linear magneto-plasmons that disperse roughly parallel to $omega=v_F q$, instead of the usual horizontal (almost dispersionless) magneto-excitons. These modes could be detected in an inelastic light scattering experiment.
The magnetic field dependence of the excitonic states in unstrained GaAs/AlGaAs quantum dots is investigated theoretically and experimentally. The diamagnetic shift for the ground and the excited states are studied in magnetic fields of varying orien
The electrodynamics of a two-dimensional gas of massless fermions in graphene is studied by a collisionless hydrodynamic approach. A low-energy dispersion relation for the collective modes (plasmons) is derived both in the absence and in the presence
Strong increase in the intensity of the peaks of excited magneto-exciton (ME) states in the photoluminescence excitation (PLE) spectra recorded for the ground heavy-hole magneto-excitons (of the 1sHH type) has been found in a GaAs/AlGaAs superlattice
Graphene has raised high expectations as a low-loss plasmonic material in which the plasmon properties can be controlled via electrostatic doping. Here, we analyze realistic configurations, which produce inhomogeneous doping, in contrast to what has
We develop covariant chiral kinetic theory with Landau level basis. We use it to investigate a magnetized plasma with a transverse electric field and a steady vorticity as perturbations. After taking into account vacuum shift in the latter case, we f