ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust photometric redshift determinations of gamma-ray burst afterglows at z > 2

54   0   0.0 ( 0 )
 نشر من قبل Peter Curran
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P.A. Curran




اسأل ChatGPT حول البحث

Theory suggests that about 10% of Swift-detected gamma-ray bursts (GRBs) will originate at redshifts greater than 5 yet a number of high redshift candidates may be left unconfirmed due to the lack of measured redshifts. Here we introduce our code, GRBz, a method of simultaneous multi-parameter fitting of GRB afterglow optical and near infrared, spectral energy distributions. It allows for early determinations of the photometric redshift, spectral index and host extinction to be made. We assume that GRB afterglow spectra are well represented by a power-law decay and model the effects of absorption due to the Lyman forest and host extinction. We use a genetic algorithm-based routine to simultaneously fit the parameters of interest, and a Monte Carlo error analysis. We use GRBs of previously determined spectroscopic redshifts to prove our method, while also introducing new near infrared data of GRB 990510 which further constrains the value of the host extinction. Our method is effective in estimating the photometric redshift of GRBs, relatively unbiased by assumptions of the afterglow spectral index or the host galaxy extinction. Monte Carlo error analysis is required as the method of error estimate based on the optimum population of the genetic algorithm underestimates errors significantly.


قيم البحث

اقرأ أيضاً

110 - B. Gendre 2008
Clustering in the luminosity of the afterglows of gamma-ray burst has been reported in the optical and X-ray. We investigate the possibility that a clustering in the luminosity of the afterglows of gamma-ray burst exists in near infrared (J, H, K ban ds). We use observations of events occurring from 1997 to the end of 2007. We correct the gamma-ray burst afterglow light curve for distance effect and time dilation, and replace all light curves to a common distance of z=1. We used only observations of signal emitted in the near infrared (in the burst frame). We observe a clustering identical to the one observed in optical and similar to the one observed in X-ray. We thus confirm the previous works made in optical. We set a constraint on the total energy of the fireball.
140 - Y.F. Huang , T. Lu , K.S. Cheng 2007
The discovery of multiband afterglows definitely shows that most $gamma$-ray bursts are of cosmological origin. $gamma$-ray bursts are found to be one of the most violent explosive phenomena in the Universe, in which astonishing ultra-relativistic mo tions are involved. In this article, the multiband observational characteristics of $gamma$-ray bursts and their afterglows are briefly reviewed. The standard model of $gamma$-ray bursts, i.e. the fireball model, is described. Emphasis is then put on the importance of the nonrelativistic phase of afterglows. The concept of deep Newtonian phase is elaborated. A generic dynamical model that is applicable in both the relativistic and nonrelativistic phases is introduced. Based on these elaborations, the overall afterglow behaviors, from the very early stages to the very late stages, can be conveniently calculated.
116 - D. A. Badjin 2013
We study thermal emission from circumstellar structures heated by gamma-ray burst (GRB) radiation and ejecta and calculate its contribution to GRB optical and X-ray afterglows using the modified radiation hydro-code small STELLA. It is shown that the rmal emission originating in heated dense shells around the GRB progenitor star can reproduce X-ray plateaus (like observed in GRB 050904, 070110) as well as deviations from a power law fading observed in optical afterglows of some GRBs (e.g. 020124, 030328, 030429X, 050904). Thermal radiation pressure in the heated circumburst shell dominates the gas pressure, producing rapid expansion of matter similar to supenova-like explosions close to opacity or radiation flux density jumps in the circumburst medium. This phenomenon can be responsible for so-called supernova bumps in optical afterglows of several GRBs. Such a `quasi-supernova suggests interpretation of the GRB-SN connection which does not directly involve the explosion of the GRB progenitor star.
186 - G. Ghisellini 2008
We selected a sample of 33 Gamma Ray Bursts (GRBs) detected by Swift, with known redshift and optical extinction at the host frame. For these, we constructed the de-absorbed and K-corrected X-ray and optical rest frame light curves. These are modelle d as the sum of two components: emission from the forward shock due to the interaction of a fireball with the circum-burst medium and an additional component, treated in a completely phenomenological way. The latter can be identified, among other possibilities, as late prompt emission produced by a long lived central engine with mechanisms similar to those responsible for the production of the standard early prompt radiation. Apart from flares or re-brightenings, that we do not model, we find a good agreement with the data, despite of their complexity and diversity. Although based in part on a phenomenological model with a relatively large number of free parameters, we believe that our findings are a first step towards the construction of a more physical scenario. Our approach allows us to interpret the behaviour of the optical and X-ray afterglows in a coherent way, by a relatively simple scenario. Within this context it is possible to explain why sometimes no jet break is observed; why, even if a jet break is observed, it is often chromatic; why the steepening after the jet break time is often shallower than predicted. Finally, the decay slope of the late prompt emission after the shallow phase is found to be remarkably similar to the time profile expected by the accretion rate of fall-back material (i.e. proportional to t^{-5/3}), suggesting that this can be the reason why the central engine can be active for a long time.
The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotro n radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; $gtrsim$~GeV) remains uncertain. The recent detection of sub-TeV emission from GRB~190114C by MAGIC raises further debate on what powers the very high-energy (VHE; $gtrsim 300$GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multi-wavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB~190114C, we find that its afterglow emission in the fermi-LAT band is synchrotron-dominated.The late-time fermi-LAT measurement (i.e., $tsim 10^4$~s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. $lesssim 3times 10^{-9},{rm erg,cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا