ﻻ يوجد ملخص باللغة العربية
This letter reports on the magnetic properties of Ti1-xCoxO2 anatase phase nanopowders with different Co contents. It is shown that oxygen vacancies play a fundamental role in promoting the long-range ferromagnetic order in the material studied, in addition to the transition-metal doping. Furthermore, the results allow ruling out the premise of a strict connection between Co clustering and the ferromagnetism observed in the Co:TiO2 anatase system.
Oxygen vacancies created in anatase TiO2 by UV photons (80 - 130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission (ARPES) reveals that the quasiparticles are l
It is shown that dilute niobium doping has significant effect on the ferromagnetism and microstructure of dilutely cobalt-doped anatase TiO2 films. Epitaxial films of anatase TiO2 with 3% Co, without and with 1% niobium doping were grown by pulsed-la
Elucidating the carrier density at which strongly bound excitons dissociate into a plasma of uncorrelated electron-hole pairs is a central topic in the many-body physics of semiconductors. However, there is a lack of information on the high-density r
We develop a first-principles approach based on many-body perturbation theory to investigate the effects of the interaction between electrons and carrier plasmons on the electronic properties of highly-doped semiconductors and oxides. Through the eva
The magnetic anisotropy of La0.7Sr0.3MnO3 nanopowders was measured as a function of temperature by the modified singular point detection technique. In this method singularities indicating the anisotropy field were determined analyzing ac susceptibili