ﻻ يوجد ملخص باللغة العربية
A simple and commonly employed approximate technique with which one can examine spatially disordered systems when strong electronic correlations are present is based on the use of real-space unrestricted self-consistent Hartree-Fock wave functions. In such an approach the disorder is treated exactly while the correlations are treated approximately. In this report we critique the success of this approximation by making comparisons between such solutions and the exact wave functions for the Anderson-Hubbard model. Due to the sizes of the complete Hilbert spaces for these problems, the comparisons are restricted to small one-dimensional chains, up to ten sites, and a 4x4 two-dimensional cluster, and at 1/2 filling these Hilbert spaces contain about 63,500 and 166 million states, respectively. We have completed these calculations both at and away from 1/2 filling. This approximation is based on a variational approach which minimizes the Hartree-Fock energy, and we have completed comparisons of the exact and Hartree-Fock energies. However, in order to assess the success of this approximation in reproducing ground-state correlations we have completed comparisons of the local charge and spin correlations, including the calculation of the overlap of the Hartree-Fock wave functions with those of the exact solutions. We find that this approximation reproduces the local charge densities to quite a high accuracy, but that the local spin correlations, as represented by < S_i . S_j >, are not as well represented. In addition to these comparisons, we discuss the properties of the spin degrees of freedom in the HF approximation, and where in the disorder-interaction phase diagram such physics may be important.
We have obtained the exact ground state wave functions of the Anderson-Hubbard model for different electron fillings on a 4x4 lattice with periodic boundary conditions - for 1/2 filling such ground states have roughly 166 million states. When compare
Partially-projected Gutzwiller variational wavefunctions are used to describe the ground state of disordered interacting systems of fermions. We compare several different variational ground states with the exact ground state for disordered one-dimens
Twisted bilayer transition metal dichalcogenides have emerged as important model systems for the investigation of correlated electron physics because their interaction strength, carrier concentration, band structure, and inversion symmetry breaking a
The nonequilibrium variational-cluster approach is applied to study the real-time dynamics of the double occupancy in the one-dimensional Fermi-Hubbard model after different fast changes of hopping parameters. A simple reference system, consisting of
In this work, we study the extended Falicov-Kimball model at half-filling within the Hartree-Fock approach (HFA) (for various crystal lattices) and compare the results obtained with the rigorous ones derived within the dynamical mean field theory (DM