ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation from relativistic jets

105   0   0.0 ( 0 )
 نشر من قبل Ken-Ichi Nishikawa
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electrons transverse deflection behind the jet head. The ``jitter radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.



قيم البحث

اقرأ أيضاً

Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-posi tron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.
Relativistic jets, or highly collimated and fast-moving outflows, are endemic to many astrophysical phenomena. The jets produced by gamma-ray bursts and tidal disruption events are accompanied by the accretion of material onto a black hole or neutron star, with the accretion rate exceeding the Eddington limit of the compact object by orders of magnitude. In such systems, radiation dominates the energy-momentum budget of the outflow, and the dynamical evolution of the jet is governed by the equations of radiation hydrodynamics. Here we show that there are analytic solutions to the equations of radiation hydrodynamics in the viscous (i.e., diffusive) regime that describe structured, relativistic jets, which consist of a fast-moving, highly relativistic core surrounded by a slower-moving, less relativistic sheath. In these solutions, the slower-moving, outer sheath contains most of the mass, and the jet structure is mediated by local anisotropies in the radiation field. We show that, depending on the pressure and density profile of the ambient medium, the angular profile of the jet Lorentz factor is Gaussian or falls off even more steeply with angle. These solutions have implications for the nature of jet production and evolution in hyperaccreting systems, and demonstrate that such jets -- and the corresponding jet structure -- can be sustained entirely by radiative processes. We discuss the implications of these findings in the context of jetted tidal disruption events and short and long gamma-ray bursts.
Relativistic jets launched by rotating black holes are powerful emitters of non-thermal radiation. Extraction of the rotational energy via electromagnetic stresses produces magnetically-dominated jets, which may become turbulent. Studies of magnetica lly-dominated plasma turbulence from first principles show that most of the accelerated particles have small pitch angles, i.e. the particle velocity is nearly aligned with the local magnetic field. We examine synchrotron-self-Compton radiation from anisotropic particles in the fast cooling regime. The small pitch angles reduce the synchrotron cooling rate and promote the role of inverse Compton (IC) cooling, which can occur in two different regimes. In the Thomson regime, both synchrotron and IC components have soft spectra, $ u F_ upropto u^{1/2}$. In the Klein-Nishina regime, synchrotron radiation has a hard spectrum, typically $ u F_ upropto u$, over a broad range of frequencies. Our results have implications for the modelling of BL Lacs and Gamma-Ray Bursts (GRBs). BL Lacs produce soft synchrotron and IC spectra, as expected when Klein-Nishina effects are minor. The observed synchrotron and IC luminosities are typically comparable, which indicates a moderate anisotropy with pitch angles $thetagtrsim0.1$. Rare orphan gamma-ray flares may be produced when $thetall0.1$. The hard spectra of GRBs may be consistent with synchrotron radiation when the emitting particles are IC cooling in the Klein-Nishina regime, as expected for pitch angles $thetasim0.1$. Blazar and GRB spectra can be explained by turbulent jets with a similar electron plasma magnetisation parameter, $sigma_{rm e}sim10^4$, which for electron-proton plasmas corresponds to an overall magnetisation $sigma=(m_{rm e}/m_{rm p})sigma_{rm e}sim10$.
We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma. Strong magnetic fields generated in the trailing jet shock lead to transverse deflection and acce leration of the electrons. We have self-consistently calculated the radiation from the electrons accelerated in the turbulent magnetic fields. We find that the synthetic spectra depend on the bulk Lorentz factor of the jet, the jet temperature, and the strength of the magnetic fields generated in the shock. We have also begun study of electron acceleration in the strong magnetic fields generated by kinetic shear (Kelvin-Helmholtz) instabilities. Our calculated spectra should lead to a better understanding of the complex time evolution and/or spectral structure from gamma-ray bursts, relativistic jets, and supernova remnants.
lasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an u nmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection behind the shock. Our initial results of a jet-ambient interaction with anti-parallel magnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا