ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting state of quasiparticles with spin dependent mass and their distinguishability for Cooper-pair state

273   0   0.0 ( 0 )
 نشر من قبل Jozef Spalek
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin dependence of quasiparticle mass has been observed recently in CeCoIn5 and other systems. It emerges from strong electronic correlations in a magnetically polarized state and was predicted earlier. Additionally, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)phase has also been discovered in CeCoIn5 and therefore, the question arises as to what extent these two basic phenomena are interconnected, as it appears in theory. Here we show that the appearance of the spin-split masses essentially extends the regime of temperature and applied magnetic field, in which FFLO state is stable, and thus, it is claimed to be very important for the phase detectability. Furthermore, in the situation when the value of the spin z-component sigma differentiates masses of the particles, the fundamental question is to what extent the two mutually bound particles are indistinguishable quantum mechanically? By considering first the Cooper-pair state we show explicitly that the antisymmetry of the spin-pair wave function in the ground state may be broken when the magnetic field is applied.



قيم البحث

اقرأ أيضاً

The first observation of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state and a subsequent detection of the spin-dependent effective masses of quasiparticles in the CeCoIn_5 heavy fermion system are combined into a single theoretical framework. The appearance of the spin-split masses extends essentially the regime of temperatures and applied magnetic fields, in which FFLO is observable and thus is claimed to be very important for the FFLO detectability. We also stress that the quasiparticles composing Cooper pair become distinguishable in the nonzero field. The analysis is performed within the Kondo-lattice limit of the finite-U Anderson-lattice model containing both the mass renormalization and real-space pairing within a single scheme.
Paired state of nonstandard quasiparticles is analyzed in detail in two model situations. Namely, we consider the Cooper-pair bound state and the condensed phase of an almost localized Fermi liquid (ALFL) composed of quasiparticles in a narrow-band w ith the spin-dependent masses (SDM) and an effective field, both introduced earlier and induced by strong electronic correlations. Each of these novel characteristics are calculated in a self-consistent manner. We analyze the bound states as a function of Cooper-pair momentum q in applied magnetic field in the strongly Pauli limiting case (i.e. when the orbital effects of applied magnetic field are disregarded). The spin-direction dependence of the effective mass makes the quasiparticles comprising Cooper pair spin distinguishable in the quantum mechanical sense, whereas the condensed gas of pairs may still be regarded as composed of identical entities. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) condensed phase of moving pairs is by far more robust in the applied field for the case with spin-dependent masses than in the situation with equal masses of quasiparticles. Relative stability of the Bardeen-Cooper-Schrieffer (BCS) vs. FFLO phase is analyzed in detail on temperature - applied field plane. Although our calculations are carried out for a model situation, we can conclude that the spin-dependent masses should play an important role in stabilizing high-field low-temperature (HFLT) unconventional superconducting phases (FFLO being an instance) in systems such as CeCoIn_5, organic metals, and possibly others.
180 - G. Alvarez , E. Dagotto 2008
The one-particle spectral function of a state formed by superconducting (SC) clusters is studied via Monte Carlo techniques. The clusters have similar SC amplitudes but randomly distributed phases. This state is stabilized by the competition with ant i-ferromagnetism, after quenched disorder is introduced. Fermi arcs between the critical temperature Tc and the cluster formation temperature scale T* are observed, similarly as in the pseudo-gap state of the cuprates. The arcs originate at metallic regions in between the neighboring clusters that present large SC phase differences.
183 - Tuson Park , H. lee , I. Martin 2011
Anisotropic, spatially textured electronic states often emerge when the symmetry of the underlying crystalline structure is lowered. However, the possibility recently has been raised that novel electronic quantum states with real-space texture could arise in strongly correlated systems even without changing the underlying crystalline structure. Here we report evidence for such texture in the superconducting quantum fluid that is induced by pressure in the heavy-fermion compound CeRhIn5. When long-range antiferromagnetic order coexists with unconventional superconductivity, there is a significant temperature difference between resistively- and thermodynamically-determined transitions into the superconducting state, but this difference disappears in the absence of magnetism. Anisotropic transport behaviour near the superconducting transition in the coexisting phase signals the emergence of textured superconducting planes that are nucleated preferentially along the {100} planes and that appear without a change in crystal symmetry. We show that CeRhIn5 is not unique in exhibiting a difference between resistive and bulk superconducting transition temperatures, indicating that textured superconductivity may be a general consequence of coexisting orders.
Many puzzling properties of high-$T_c$ superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wavevector parallel to the Cu-O bonds. These electronic states are most affecte d by the onset of antiferromagnetic correlations and charge instabilities and they host the maximum of the anisotropic superconducting gap and pseudogap. In this work, we use time-resolved extreme-ultra-violet (EUV) photoemission with proper photon energy (18 eV) and time-resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate. After photoinducing a non-thermal charge redistribution within the Cu and O orbitals, we reveal a dramatic momentum-space differentiation of the transient electron dynamics. While the nodal quasi-particle distribution is heated up as in a conventional metal, new quasiparticle states transiently emerge at the antinodes, similarly to what is expected for a photoexcited Mott insulator, where the frozen charges can be released by an impulsive excitation. This transient antinodal metallicity is mapped into the dynamics of the O-2$p$ bands thus directly demonstrating the intertwining between the low- and high-energy scales that is typical of correlated materials. Our results suggest that the correlation-driven freezing of the electrons moving along the Cu-O bonds, analogous to the Mott localization mechanism, constitutes the starting point for any model of high-$T_c$ superconductivity and other exotic phases of HTSC cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا