ترغب بنشر مسار تعليمي؟ اضغط هنا

The Science of Galaxy Formation

62   0   0.0 ( 0 )
 نشر من قبل Gerry Gilmore
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gerard Gilmore




اسأل ChatGPT حول البحث

Our knowledge of the Universe remains discovery-led: in the absence of adequate physics-based theory, interpretation of new results requires a scientific methodology. Commonly, scientific progress in astrophysics is motivated by the empirical success of the Copernican Principle, that the simplest and most objective analysis of observation leads to progress. A complementary approach tests the prediction of models against observation. In practise, astrophysics has few real theories, and has little control over what we can observe. Compromise is unavoidable. Advances in understanding complex non-linear situations, such as galaxy formation, require that models attempt to isolate key physical properties, rather than trying to reproduce complexity. A specific example is discussed, where substantial progress in fundamental physics could be made with an ambitious approach to modelling: simulating the spectrum of perturbations on small scales.

قيم البحث

اقرأ أيضاً

We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshi ft error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.
50 - Kotaro Kohno 2019
State-of-the-art rest-frame UV and FIR photometric and spectroscopic observations are now pushing the redshift frontiers of galaxy formation studies up to $zsim9-11$ and beyond. Recent HST observations unveiled the presence of a star-forming galaxy e xhibiting the Lyman break at $lambda_{rm obs}=1.47pm0.01$ $mu$m, i.e., a $z=11.09^{+0.08}_{-0.12}$ galaxy with a stellar mass of $sim10^9 M_odot$, demonstrating that galaxy build-up was well underway early in the epoch of reionization (EoR) at $z>10$. Targeted spectroscopy of a lensed Lyman break galaxy uncovers the earliest metals known to date up to $z=9.1096pm0.0006$ by detecting the bright [OIII] 88~$mu$m nebular line, indicating the onset of star formation 250 million years after the Big Bang, i.e., corresponding to a redshift of $zsim15$. These latest findings lead us to a number of key questions: How and when metal enrichment happened in the EoR? What was the nature of the earliest-epoch star-forming galaxies at $z=10-15$? What was the spatial distribution of such galaxies, and what was the relation to the putative large-scale ionization bubbles during the EoR? What were the dark-halo masses of such earliest-epoch star-forming galaxies? To address all these questions, we need to uncover a statistically large number of $z=10-15$ galaxies in the pre-reionization era. Here we argue two possible pathways: (1) a wide-area, sensitive blind spectroscopic survey of [OIII] 88 $mu$m line-emitting galaxies at submillimeter wavelengths, and (2) an ultra-wide-area, high-cadence photometric survey of transient sources at radio-to-(sub)millimeter wavelengths, together with the immediate follow-up spectroscopy with an ultra-wide-band spectrograph, to catch the pop-III $gamma$-ray bursts.
88 - J. Prat , C. Sanchez , R. Miquel 2016
We present a measurement of galaxy-galaxy lensing around a magnitude-limited ($i_{AB} < 22.5$) sample of galaxies from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0 .8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($zsim0.3$), they show some tension with the findings in Giannantonio et al. (2016). We measure $bcdot r$ to be $0.87pm 0.11$, $1.12 pm 0.16$ and $1.24pm 0.23$, respectively for the three redshift bins of width $Delta z = 0.2$ in the range $0.2<z <0.8$, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20% level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. (2016) we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin ($zsim 0.3$), where we find $r = 0.71 pm 0.11$ when using TPZ, and $0.83 pm 0.12$ with BPZ.
Modern galaxy cluster science is a multi-wavelength endeavor with cornerstones provided by X-ray, optical/IR, mm, and radio measurements. In combination, these observations enable the construction of large, clean, complete cluster catalogs, and provi de precise redshifts and robust mass calibration. The complementary nature of these multi-wavelength data dramatically reduces the impact of systematic effects that limit the utility of measurements made in any single waveband. The future of multi-wavelength cluster science is compelling, with cluster catalogs set to expand by orders of magnitude in size, and extend, for the first time, into the high-redshift regime where massive, virialized structures first formed. Unlocking astrophysical and cosmological insight from the coming catalogs will require new observing facilities that combine high spatial and spectral resolution with large collecting areas, as well as concurrent advances in simulation modeling campaigns. Together, future multi-wavelength observations will resolve the thermodynamic structure in and around the first groups and clusters, distinguishing the signals from active and star-forming galaxies, and unveiling the interrelated stories of galaxy evolution and structure formation during the epoch of peak cosmic activity.
Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work has already bee n, and is still being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project (PFI) has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planet-hosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI. For this purpose, we briefly review our knowledge about the planet-formation process and discuss recent observational results that have been obtained on the class of transition disks. Spectro-photometric and multi-wavelength interferometric studies of these systems revealed the presence of extended gaps and complex density inhomogeneities that might be triggered by orbiting planets. We present detailed 3-D radiation-hydrodynamic simulations of disks with single and multiple embedded planets, from which we compute synthetic images at near-infrared, mid-infrared, far-infrared, and sub-millimeter wavelengths, enabling a direct comparison of the signatures that are detectable with PFI and complementary facilities such as ALMA. From these simulations, we derive some preliminary specifications that will guide the array design and technology roadmap of the facility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا