ﻻ يوجد ملخص باللغة العربية
The goal of this paper is to define fermionic fields on causal set. This is done by the use of holonomies to define vierbines, and then defining spinor fields by taking advantage of the leftover degrees of freedom of holonomies plus additional scalar fields. Grassmann nature is being enforced by allowing measure to take both positive and negative values, and also by introducing a vector space to have both commutting dot product and anticommutting wedge product.
This is the second paper in a series on the dynamics of matter fields in the causal set approach to quantum gravity. We start with the usual expression for the Lagrangian of a charged scalar field coupled to a SU(n) Yang-Mills field, in which the gau
The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quant
In this paper we will define a Lagrangian for scalar and gauge fields on causal sets, based on the selection of an Alexandrov set in which the variations of appropriate expressions in terms of either the scalar field or the gauge field holonomies aro
In this paper we address the non-locality issue of quantum field theory on a causal set by rewriting it in such a way that avoids the use of dAlembertian. We do that by replacing scalar field over points with scalar field over edges, where the edges
The goal of this paper is to present the way to define fermionic fields and their Lagrangians in terms of three orthogonal vector fields of norm 1 together with two real valued scalar fields. This paper is based on a toy model where there are no Grassmann variables.