ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Supernova Feedback on the Formation of Galaxies

58   0   0.0 ( 0 )
 نشر من قبل Cecilia Scannapieco
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effects of Supernova (SN) feedback on the formation of galaxies using hydrodynamical simulations in a Lambda-CDM cosmology. We use an extended version of the code GADGET-2 which includes chemical enrichment and energy feedback by Type II and Type Ia SN, metal-dependent cooling and a multiphase model for the gas component. We focus on the effects of SN feedback on the star formation process, galaxy morphology, evolution of the specific angular momentum and chemical properties. We find that SN feedback plays a fundamental role in galaxy evolution, producing a self-regulated cycle for star formation, preventing the early consumption of gas and allowing disks to form at late times. The SN feedback model is able to reproduce the expected dependence on virial mass, with less massive systems being more strongly affected.

قيم البحث

اقرأ أيضاً

We use cosmological simulations in order to study the effects of supernova (SN) feedback on the formation of a Milky Way-type galaxy of virial mass ~10^12 M_sun/h. We analyse a set of simulations run with the code described by Scannapieco et al. (200 5, 2006), where we have tested our star formation and feedback prescription using isolated galaxy models. Here we extend this work by simulating the formation of a galaxy in its proper cosmological framework, focusing on the ability of the model to form a disk-like structure in rotational support. We find that SN feedback plays a fundamental role in the evolution of the simulated galaxy, efficiently regulating the star formation activity, pressurizing the gas and generating mass-loaded galactic winds. These processes affect several galactic properties such as final stellar mass, morphology, angular momentum, chemical properties, and final gas and baryon fractions. In particular, we find that our model is able to reproduce extended disk components with high specific angular momentum and a significant fraction of young stars. The galaxies are also found to have significant spheroids composed almost entirely of stars formed at early times. We find that most combinations of the input parameters yield disk-like components, although with different sizes and thicknesses, indicating that the code can form disks without fine-tuning the implemented physics. We also show how our model scales to smaller systems. By analysing simulations of virial masses 10^9 M_sun/h and 10^10 M_sun/h, we find that the smaller the galaxy, the stronger the SN feedback effects.
We study the effects of Active Galactic Nuclei (AGN) feedback on the formation and evolution of galaxies in a semi-analytic model of galaxy formation. This model is an improved version of the one described by Cora (2006), which now considers the grow th of black holes (BHs) as driven by (i) gas accretion during merger-driven starbursts and mergers with other BHs, (ii) accretion during starbursts triggered by disc instabilities, and (iii) accretion of gas cooled from quasi-hydrostatic hot gas haloes. It is assumed that feedback from AGN operates in the later case. The model has been calibrated in order to reproduce observational correlations between BH mass and mass, velocity dispersion, and absolute magnitudes of the galaxy bulge. AGN feedback has a strong impact on reducing or even suppressing gas cooling, an effect that becomes important at lower redshifts. This phenomenon helps to reproduce the observed galaxy luminosity function (LF) in the optical and near IR bands at z=0, and the cosmic star formation rate and stellar mass functions over a wide redshift range (0<z<5). It also allows to have a population of massive galaxies already in place at z>1, which are mostly early-type and have older and redder stellar populations than lower mass galaxies, reproducing the observed bimodality in the galaxy colour distribution, and the morphological fractions. The evolution of the optical QSO LF is also reproduced, provided that the presence of a significant fraction of obscured QSOs is assumed. We explore the effects of AGN feedback during starbursts and new recent prescriptions for dynamical friction time-scales. (ABRIDGED)
120 - Gerhard Hensler 2010
Supernovae are the most energetic stellar events and influence the interstellar medium by their gasdynamics and energetics. By this, both also affect the star formation positively and negatively. In this paper, we review the development of the comple xity of investigations aiming at understanding the interchange between supernovae and their released hot gas with the star-forming molecular clouds. Commencing from analytical studies the paper advances to numerical models of supernova feedback from superbubble scales to galaxy structure. We also discuss parametrizations of star-formation and supernova-energy transfer efficiencies. Since evolutionary models from the interstellar medium to galaxies are numerous and apply multiple recipes of these parameters, only a representative selection of studies can be discussed here.
We implement an optically thin approximation for the effects of the local radiation field from stars and hot gas on the gas heating and cooling in the N-body SPH code GASOLINE2. We resimulate three galaxies from the NIHAO project: one dwarf, one Milk y Way-like and one massive spiral, and study what are the local radiation field effects on various galaxy properties. We also study the effects of varying the Ultra Violet Background (UVB) model, by running the same galaxies with two different UVBs. Galaxy properties at $z=0$ like stellar mass, stellar effective mass radius, HI mass, and radial extent of the HI disc, show significant changes between the models with and without the local radiation field, and smaller differences between the two UVB models. The intrinsic effect of the local radiation field through cosmic time is to increase the equilibrium temperature at the interface between the galaxies and their circumgalactic media (CGM), moving this boundary inwards, while leaving relatively unchanged the gas inflow rate. Consequently, the temperature of the inflow increases when considering the local radiation sources. This temperature increase is a function of total galaxy mass, with a median CGM temperature difference of one order of magnitude for the massive spiral. The local radiation field suppresses the stellar mass growth by $sim$20 per cent by $z=0$ for all three galaxies, while the HI mass is roughly halfed. The differences in the gas phase diagrams, significantly impact the HI column densities, shifting their peaks in the distributions towards lower $N_{rm HI}$.
Protostellar feedback, both radiation and bipolar outflows, dramatically affects the fragmentation and mass accretion from star-forming cores. We use ORION, an adaptive mesh refinement gravito-radiation-hydrodynamics code, to simulate the formation o f a cluster of low-mass stars, including both radiative transfer and protostellar outflows. We ran four simulations to isolate the individual effects of radiation feedback and outflow feedback as well as the combination of the two. Outflows reduce protostellar masses and accretion rates each by a factor of three and therefore reduce protostellar luminosities by an order of magnitude. Thus, while radiation feedback suppresses fragmentation, outflows render protostellar radiation largely irrelevant for low-mass star formation above a mass scale of 0.05 M_sun. We find initial fragmentation of our cloud at half the global Jeans length, ~ 0.1 pc. With insufficient protostellar radiation to stop it, these 0.1 pc cores fragment repeatedly, forming typically 10 stars each. The accretion rate in these stars scales with mass as predicted from core accretion models that include both thermal and turbulent motions. We find that protostellar outflows do not significantly affect the overall cloud dynamics, in the absence of magnetic fields, due to their small opening angles and poor coupling to the dense gas. The outflows reduce the mass from the cores by 2/3, giving a core to star efficiency ~ 1/3. The simulation with radiation and outflows reproduces the observed protostellar luminosity function. All of the simulations can reproduce observed core mass functions, though they are sensitive to telescope resolution. The simulation with both radiation and outflows reproduces the galactic IMF and the two-point correlation function of the cores observed in rho Oph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا