ﻻ يوجد ملخص باللغة العربية
We give an exposition of the theory of invariant manifolds around a fixed point, in the case of time-discrete, analytic dynamical systems over a complete ultrametric field K. Typically, we consider an analytic manifold M modelled on an ultrametric Banach space over K, an analytic self-map f of M, and a fixed point p of f. Under suitable conditions on the tangent map of f at p, we construct a centre-stable manifold, a centre manifold, respectively, an r-stable manifold around p, for a given positive real number r not exceeding 1. The invariant manifolds are useful in the theory of Lie groups over local fields, where they allow results to be extended to the case of positive characteristic which previously were only available in characteristic zero (i.e., for p-adic Lie groups).
An important problem in the theory of finite dynamical systems is to link the structure of a system with its dynamics. This paper contains such a link for a family of nonlinear systems over an arbitrary finite field. For systems that can be described
This article establishes the foundation for a new theory of invariant/integral manifolds for non-autonomous dynamical systems. Current rigorous support for dimensional reduction modelling of slow-fast systems is limited by the rare events in stochast
A matchbox manifold is a foliated space with totally disconnected transversals, and an equicontinuous matchbox manifold is the generalization of Riemannian foliations for smooth manifolds in this context. In this paper, we develop the Molino theory f
We consider a pair (H,I) where I is an involutive ideal of a Poisson algebra and H lies in I. We show that if I defines a 2n-gon singularity then, under arithmetical conditions on H, any deformation of H can integrated as a deformation of (H,I).
Let X be an analytic vector field on a real or complex 2-manifold, and K a compact set of zeros of X whose fixed point index is not zero. Let A denote the Lie algebra of analytic vector fields Y on M such that at every point of M the values of X and