ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzers mid-infrared view on an outer Galaxy Infrared Dark Cloud candidate toward NGC 7538

22   0   0.0 ( 0 )
 نشر من قبل Wilfred Frieswijk
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared Dark Clouds (IRDCs) represent the earliest observed stages of clustered star formation, characterized by large column densities of cold and dense molecular material observed in silhouette against a bright background of mid-IR emission. Up to now, IRDCs were predominantly known toward the inner Galaxy where background infrared emission levels are high. We present Spitzer observations with the Infrared Camera Array toward object G111.80+0.58 (G111) in the outer Galactic Plane, located at a distance of ~3 kpc from us and ~10 kpc from the Galactic center. Earlier results show that G111 is a massive, cold molecular clump very similar to IRDCs. The mid-IR Spitzer observations unambiguously detect object G111 in absorption. We have identified for the first time an IRDC in the outer Galaxy, which confirms the suggestion that cluster-forming clumps are present throughout the Galactic Plane. However, against a low mid-IR back ground such as the outer Galaxy it takes some effort to find them.

قيم البحث

اقرأ أيضاً

The characterisation of the stellar population toward young high-mass star-forming regions allows to constrain fundamental cluster properties like distance and age. These are essential when using high-mass clusters as probes to conduct Galactic studi es. NGC 7538 is a star-forming region with an embedded stellar population only unearthed in the near-infrared. We present the first near-infrared spectro-photometric study of the candidate high-mass stellar content in NGC 7538. We obtained H and K spectra of 21 sources with both the multi-object and long-slit modes of LIRIS at the WHT, and complement these data with sub-arcsecond JHKs photometry of the region using the imaging mode of the same instrument. We find a wide variety of objects within the studied stellar population of NGC 7538. Our results discriminate between a stellar population associated to the HII region, but not contained within its extent, and several pockets of more recent star formation. We report the detection of CO bandhead emission toward several sources as well as other features indicative of a young stellar nature. We infer a spectro-photometric distance of 2.7+-0.5 kpc, an age spread in the range 0.5-2.2 Myr and a total mass ~1.7x10^3 Msun for the older population.
We investigate the deuteration of methanol towards the high-mass star forming region NGC 7538-IRS1. We have carried out a multi-transition study of CH$_3$OH, $^{13}$CH$_3$OH and of the deuterated fllavors, CH$_2$DOH and CH$_3$OD, between 1.0--1.4 mm with the IRAM-30~m antenna. In total, 34 $^{13}$CH$_3$OH, 13 CH$_2$DOH lines and 20 CH$_3$OD lines spanning a wide range of upper-state energies (E$_{up}$) were detected. From the detected transitions, we estimate that the measured D/H does not exceed 1$%$, with a measured CH$_2$DOH/CH$_3$OH and CH$_3$OD/CH$_3$OH of about (32$pm$8)$times$10$^{-4}$ and (10$pm$4)$times$10$^{-4}$, respectively. This finding is consistent with the hypothesis of a short-time scale formation during the pre-stellar phase. We find a relative abundance ratio CH$_2$DOH/CH$_3$OD of 3.2 $pm$ 1.5. This result is consistent with a statistical deuteration. We cannot exclude H/D exchanges between water and methanol if water deuteration is of the order 0.1$%$, as suggested by recent Herschel observations.
82 - C. J. Cesarsky 1999
From the disk of normal galaxies to the nucleus of prototype active sources, we review the wealth of results and new understanding provided by recent infrared probes and, in particular, the four instruments on-board of ISO.
We present high resolution (R = 75,000-100,000) mid-infrared spectra of the high-mass embedded young star IRS 1 in the NGC 7538 star-forming region. Absorption lines from many rotational states of C2H2, 13C12CH2, CH3, CH4, NH3, HCN, HNCO, and CS are seen. The gas temperature, column density, covering factor, line width, and Doppler shift for each molecule are derived. All molecules were fit with two velocity components between -54 and -63 km/s. We find high column densities (~ 10e16 cm^2) for all the observed molecules compared to values previously reported and present new results for CH3 and HNCO. Several physical and chemical models are considered. The favored model involves a nearly edge-on disk around a massive star. Radiation from dust in the inner disk passes through the disk atmosphere, where large molecular column densities can produce the observed absorption line spectrum.
Near-infrared surveys of high-mass star-forming regions start to shed light onto their stellar content. A particular class of objects found in these regions, the so-called massive Young Stellar Objects (YSOs) are surrounded by dense circumstellar mat erial. Several near- and mid-infrared diagnostic tools are used to infer the physical characteristics and geometry of this circumstellar matter. Near-infrared hydrogen emission lines provide evidence for a disk-wind. The profiles of the first overtone of the CO band-heads, originating in the inner 10 AU from the central star, are well fitted assuming a keplerian rotating disk. The mid-infrared spectral energy distribution requires the presence of a more extended envelope containing dust at a temperature of about 200 K. CRIRES observations of CO fundamental absorption lines confirm the presence of a cold envelope. We discuss the evolutionary status of these objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا