ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-Ray Emission from the Broad-Line Radio Galaxy 3C111

206   0   0.0 ( 0 )
 نشر من قبل Matthias Kadler
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The broad-line radio galaxy 3C111 has been suggested as the counterpart of the gamma-ray source 3EGJ0416+3650. While 3C111 meets most of the criteria for a high-probability identification, like a bright flat-spectrum radio core and a blazar-like broadband SED, in the Third EGRET Catalog, the large positional offset of about 1.5 degrees put 3C111 outside the 99% probability region for 3EGJ0416+3650, making this association questionable. We present a re-analysis of all available data for 3C111 from the EGRET archives, resulting in probable detection of high-energy gamma-ray emission above 1000MeV from a position close to the nominal position of 3C111, in two separate viewing periods (VPs), at a 3-sigma level in each. A new source, GROJ0426+3747, appears to be present nearby. For >100MeV, one source seems to account for most of the EGRET-detected emission of 3EGJ0416+3650. A follow-up Swift UVOT/XRT observation reveals one moderately bright X-ray source in the error box of 3EGJ0416+3650, but because of the large EGRET position uncertainty, it is not certain that the X-ray and gamma-ray sources are associated. Another Swift observation, of GROJ0426+3747, detected no X-ray source nearby.

قيم البحث

اقرأ أيضاً

We present an ASCA observation of the broad line radio galaxy 3C111. The X-ray spectrum is well described by a model consisting of a photoelectrically-absorbed power-law form. The inferred absorbing column density is significantly greater than expect ed on the basis of 21-cm measurements of Galactic HI. Whilst this may be due intrinsic absorption from a circumnuclear torus or highly warped accretion disk, inhomogeneities and molecular gas within the foreground giant molecular cloud may also be responsible for some of this excess absorption. We also claim a marginal detection of a broad iron Ka line which is well explained as being a fluorescent line originating from the central regions of a radiatively-efficient accretion disk. This line appears weak in comparison to those found in (radio-quiet) Seyfert nuclei. We briefly discuss the implications of this fact.
Gamma-ray binaries (GBs) have been object of intense studies in the last decade. From an observational perspective, GBs are phenomenologically similar to most X-ray binary systems in terms of their broad-band emission across the entire electromagneti c spectrum, being segregated from this source population by showing a maximum of their spectral energy distribution in the gamma-ray band, either at high-energies (HE: 100 MeV - 100 GeV) or very-high energies (VHE: above 100 GeV). From a theoretical perspective, the broad-band emission from GBs is a unique case in which particle acceleration and emission/absorption mechanisms can be tested against periodically changing conditions of their immediate surroundings. In this proceedings we examine some of the key observational results of the multi-wavelength emission from GBs. We discuss the correlated/contemporaneous emission observed in several of these systems, from radio to gamma-rays, by considering a single underlying particle-emitting population and the properties of the nearby photon, matter and magnetic ambient fields.
We report on a detailed investigation of the gamma-ray emission from 18 broad line radio galaxies (BLRGs) based on two years of Fermi Large Area Telescope (LAT) data. We confirm the previously reported detections of 3C 120 and 3C 111 in the GeV photo n energy range; a detailed look at the temporal characteristics of the observed gamma-ray emission reveals in addition possible flux variability in both sources. No statistically significant gamma-ray detection of the other BLRGs was however found in the considered dataset. Though the sample size studied is small, what appears to differentiate 3C 111 and 3C 120 from the BLRGs not yet detected in gamma-rays is the particularly strong nuclear radio flux. This finding, together with the indications of the gamma-ray flux variability and a number of other arguments presented, indicate that the GeV emission of BLRGs is most likely dominated by the beamed radiation of relativistic jets observed at intermediate viewing angles. In this paper we also analyzed a comparison sample of high accretion-rate Seyfert 1 galaxies, which can be considered radio-quiet counterparts of BLRGs, and found none were detected in gamma-rays. A simple phenomenological hybrid model applied for the broad-band emission of the discussed radio-loud and radio-quiet type 1 active galaxies suggests that the relative contribution of the nuclear jets to the accreting matter is > 1 percent on average for BLRGs, whilst <0.1 percent for Seyfert 1 galaxies.
We present a study of the central engine in the broad-line radio galaxy 3C 109. To investigate the immediate surrounding of this accreting, supermassive black hole, we perform a multi-epoch broad-band spectral analysis of a joint NuSTAR/XMM observati on (2017), an archival xmm observation (2005) and the 105-month averaged Swift-BAT data. We are able to clearly separate the spectrum into a primary continuum, neutral and ionized absorption, and a reflection component. The photon index of the primary continuum has changed since 2005 ($Gamma = 1.61 substack{+0.02 -0.01} rightarrow 1.54 pm{0.02}$), while other components remain unchanged, indicative of minimal geometric changes to the central engine. We constrain the high-energy cutoff of 3C 109 (E$_{text{cut}}= 49 substack{+7 -5}$,keV ) for the first time. The reflector is found to be ionized (log $xi$ = $2.3 substack{+0.1 -0.2}$) but no relativistic blurring is required by the data. SED analysis confirms the super-Eddington nature of 3C 109 initially ($lambda_{Edd} >$ 2.09). However, we do not find any evidence for strong reflection (R = $0.18 substack{+0.04 -0.03}$) or a steep power law index, as expected from a super-Eddington source. This puts the existing virial mass estimate of 2 $times 10^{8}$M$_{odot}$ into question. We explore additional ways of estimating the Eddington ratio, some of which we find to be inconsistent with our initial SED estimate. We obtain a new black hole mass estimate of 9.3 $times 10^{8}$M$_{odot}$, which brings all Eddington ratio estimates into agreement and does not require 3C 109 to be super-Eddington.
143 - K. M. Leighly 1995
During 1995, the broad-line radio galaxy 3C 390.3 is the subject of a multi-wavelength monitoring campaign comprised of ROSAT HRI, IUE, and ground based optical, infrared and radio observations. We report preliminary results from the monitoring campa ign focusing on the X-ray observations. Snapshot ROSAT observations being made every three days show large amplitude variability. The light curve is dominated by a flare near JD 2449800 characterized by a doubling time scale of 9 days and a general increase in flux after the flare. The optical R and I band light curves show a general increase in flux. The ASCA spectra obtained before and after the flare can be described by an absorbed power law. Spectral variability between the two observations is characterized by an increase in power law index by $DeltaGamma sim 0.08$ at higher flux.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا