ﻻ يوجد ملخص باللغة العربية
Quasiconformal homeomorphisms of the whole space Rn, onto itself normalized at one or two points are studied. In particular, the stability theory, the case when the maximal dilatation tends to 1, is in the focus. Our main result provides a spatial analogue of a classical result due to Teichmuller. Unlike Teichmullers result, our bounds are explicit. Explicit bounds are based on two sharp well-known distortion results: the quasiconformal Schwarz lemma and the bound for linear dilatation. Moreover, Bernoulli type inequalities and asymptotically sharp bounds for special functions involving complete elliptic integrals are applied to simplify the computations. Finally, we discuss the behavior of the quasihyperbolic metric under quasiconformal maps and prove a sharp result for quasiconformal maps of R^n {0} onto itself.
For a given ring (domain) in $overline{mathbb{R}}^n$ we discuss whether its boundary components can be separated by an annular ring with modulus nearly equal to that of the given ring. In particular, we show that, for all $nge 3,,$ the standard defin
The Darlington synthesis problem (in the scalar case) is the problem of embedding a given contractive analytic function to an inner $2times 2$ matrix function as the entry. A fundamental result of Arov--Douglas--Helton relates this algebraic property
It was known to von Neumann in the 1950s that the integer lattice $mathbb{Z}^2$ forms a uniqueness set for the Bargmann-Fock space. It was later demonstrated by Seip and Wallsten that a sequence of points $Gamma$ that is uniformly close to the intege
A description of the Bloch functions that can be approximated in the Bloch norm by functions in the Hardy space $H^p$ of the unit ball of $Cn$ for $0<p<infty$ is given. When $0<pleq1$, the result is new even in the case of the unit disk.
We show that for an entire function $varphi$ belonging to the Fock space ${mathscr F}^2(mathbb{C}^n)$ on the complex Euclidean space $mathbb{C}^n$, the integral operator begin{eqnarray*} S_{varphi}F(z)=int_{mathbb{C}^n} F(w) e^{z cdotbar{w}} varphi(z