ﻻ يوجد ملخص باللغة العربية
By analyzing trajectories of solid hydrogen tracers, we find that the distributions of velocity in decaying quantum turbulence in superfluid $^4$He are strongly non-Gaussian with $1/v^3$ power-law tails. These features differ from the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. We examine the dynamics of many events of reconnection between quantized vortices and show by simple scaling arguments that they produce the observed power-law tails.
The phenomenology of velocity statistics in turbulent flows, up to now, relates to different models dealing with either signed or unsigned longitudinal velocity increments, with either inertial or dissipative fluctuations. In this paper, we are conce
We analyze the statistics of turbulent velocity fluctuations in the time domain. Three cases are computed numerically and compared: (i) the time traces of Lagrangian fluid particles in a (3D) turbulent flow (referred to as the dynamic case); (ii) the
Velocity statistics is a direct probe of the dynamics of interstellar turbulence. Its observational measurements are very challenging due to the convolution between density and velocity and projection effects. We introduce the projected velocity stru
We present a numerical study of two-dimensional turbulent flows in the enstrophy cascade regime, with different large-scale forcings and energy sinks. In particular, we study the statistics of more-than-differentiable velocity fluctuations by means o
The problem of one-dimensional randomly forced Burgers turbulence is considered in terms of (1+1) directed polymers. In the limit of strong turbulence (which corresponds to the zero temperature limit for the directed polymer system) using the replica