ترغب بنشر مسار تعليمي؟ اضغط هنا

Hubble Space Telescope Spectroscopic Observations of the Narrow-Line Region in Nearby Low-Luminosity Active Galactic Nuclei

64   0   0.0 ( 0 )
 نشر من قبل Jonelle Walsh
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We present STIS observations of 14 nearby low-luminosity active galactic nuclei, including 13 LINERs and 1 Seyfert, taken at multiple parallel slit positions centered on the galaxy nuclei and covering the H-alpha spectral region. For each galaxy, we measure the emission-line velocities, line widths, and strengths, to map out the inner narrow-line region structure. There is a wide diversity among the velocity fields: in a few galaxies the gas is clearly in disk-like rotation, while in other galaxies the gas kinematics appear chaotic or are dominated by radial flows with multiple velocity components. The [S II] line ratio indicates a radial stratification in gas density, with a sharp increase within the inner 10-20 pc, in the majority of the Type 1 objects. We examine how the [N II] 6583 line width varies as a function of aperture size over a range of spatial scales, extending from scales comparable to the black holes sphere of influence to scales dominated by the host galaxys bulge. For most galaxies in the sample, we find that the emission-line velocity dispersion is largest within the black holes gravitational sphere of influence, and decreases with increasing aperture size toward values similar to the bulge stellar velocity dispersion measured within ground-based apertures. Future dynamical modeling in order to determine black hole masses for a few objects in this sample may be worthwhile, although disorganized motion will limit the accuracy of the mass measurements.

قيم البحث

اقرأ أيضاً

64 - Melissa S. Rice 2005
We have analyzed HST spectroscopy of 24 nearby AGNs to investigate spatially-resolved gas kinematics in the Narrow Line Region (NLR). These observations effectively isolate the nuclear line profiles on less than 100 pc scales and are used to investig ate the origin of the substantial scatter between the widths of strong NLR lines and the stellar velocity dispersion sigma_* of the host galaxy, a quantity which relates with substantially less scatter to the mass of the central, supermassive black hole, and more generally characterize variations in the NLR velocity field with radius. We find that line widths measured with STIS at a range of spatial scales systematically underestimate both sigma_* and the line width measured from ground-based observations, although they do have comparably large scatter to the relation between ground-based NLR line width and sigma_*. There are no obvious trends in the residuals when compared with a range of host galaxy and nuclear properties. The widths and asymmetries of [OIII] 5007 and [SII] 6716, 6731 as a function of radius exhibit a wide range of behavior. Some of the most common phenomena are substantial width increases from the STIS to the large-scale, ground-based aperture and almost no change in line profile between the unresolved nuclear spectrum and ground-based measurements. We identify asymmetries in a surprisingly large fraction of low-ionization [SII] line profiles and several examples of substantial red asymmetries in both [OIII] and [SII]. These results underscore the complexity of the circumnuclear material that constitutes the NLR and suggest that the scatter in the NLR width and sigma_* correlation can not be substantially reduced with a simple set of empirical relations.
The majority of the activity around nearby (z ~ 0) supermassive black holes is found in low-luminosity active galactic nuclei (LLAGN), the most of them being classified as low ionization nuclear emission regions. Although these sources are well studi ed from radio up to X-rays, they are poorly understood in gamma-rays. In this work we take advantage of the all sky-surveying capabilities of the Large Area Telescope on board Fermi Gamma ray Space Telescope to study the whole Palomar sample of LLAGN in gamma-rays. Precisely, the four radio-brightest LLAGN in the sample are identified as significant gamma-ray emitters, all of which are recognized as powerful Fanaroff-Riley I galaxies. These results suggest that the presence of powerful radio jets is of substantial importance for observing a significant gamma-ray counterpart even if these jets are misaligned with respect to the line of sight. We also find that most of the X-ray-brightest LLAGN do not have a significant gamma-ray and strong radio emission, suggesting that the X-rays come mainly from the accretion flow in these cases. A detailed analysis of the spectral energy distributions (SEDs) of NGC 315 and NGC 4261, both detected in gamma-rays, is provided where we make a detailed comparison between the predicted hadronic gamma-ray emission from a radiatively inefficient accretion flow (RIAF) and the gamma-ray emission from a leptonic jet-dominated synchrotron self-Compton (SSC) model. Both SEDs are better described by the SSC model while the RIAF fails to explain the gamma-ray observations.
We reinvestigate the relationship between the characteristic broad-line region size (R_blr) and the Balmer emission-line, X-ray, UV, and optical continuum luminosities. Our study makes use of the best available determinations of R_blr for a large num ber of active galactic nuclei (AGNs) from Peterson et al. Using their determinations of R_blr for a large sample of AGNs and two different regression methods, we investigate the robustness of our correlation results as a function of data sub-sample and regression technique. Though small systematic differences were found depending on the method of analysis, our results are generally consistent. Assuming a power-law relation R_blr propto L^alpha, we find the mean best-fitting alpha is about 0.67+/-0.05 for the optical continuum and the broad Hbeta luminosity, about 0.56+/-0.05 for the UV continuum luminosity, and about 0.70+/-0.14 for the X-ray luminosity. We also find an intrinsic scatter of about 40% in these relations. The disagreement of our results with the theoretical expected slope of 0.5 indicates that the simple assumption of all AGNs having on average same ionization parameter, BLR density, column density, and ionizing spectral energy distribution, is not valid and there is likely some evolution of a few of these characteristics along the luminosity scale.
110 - Joseph C. Shields 2004
We present results from a program of optical spectroscopy for 23 nearby galaxy emission-line nuclei. This investigation takes advantage of the spatial resolution of the Hubble Space Telescope to study the structure and energetics of the central 10 - 20 pc, and the resulting data have value for quantifying central black hole masses, star formation histories, and nebular properties. This paper provides a description of the experimental design, and new findings from the study of emission lines. The sample targets span a range of nebular spectroscopic class, from HII to Seyfert nuclei. The line ratios indicative of nebular ionization show only modest variations over order-of-magnitude differences in radius, and demonstrate in a systematic way that geometrical dilution of the radiation field from a central source cannot be assumed as a primary driver of ionization structure. Comparisons between large- and small-aperture measurements for the HII/LINER transition objects provide a new test that challenges conventional wisdom concerning the composite nature of these systems. We also list a number of other quantitative results that are of interest for understanding galaxy nuclei, including (1) the spatial distribution/degree of concentration of H-alpha emission as a function of nebular type; (2) the radial variation in electron density as a function of nebular type; and (3) quantitative broad H-alpha estimates obtained at a second epoch for these low-luminosity nuclei. The resulting measurements provide a new basis for comparing the nuclei of other galaxies with that of the Milky Way. We find that the Galactic Center is representative across a wide span of properties as a low-luminosity emission-line nucleus.
The pointing directions of extensive air showers observed at the Pierre Auger Observatory were fitted within 3.1 degree with positions of the nearby active galactic nuclei from the Veron-Cetty and P. Veron catalog. The cosmic ray luminosity of the ac tive galactic nuclei which happened to be a source of the particular cosmic ray event constitutes a fraction ~0.0001 of the optical one if only cosmic ray particles with energies above 60 EeV are produced. If produced cosmic ray particles have a spectrum dE/E^3 up to ~100 GeV then the cosmic ray luminosity would be much higher than the optical one of the active galactic nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا