ترغب بنشر مسار تعليمي؟ اضغط هنا

R&D progress on second-generation crystals for Laue lens applications

57   0   0.0 ( 0 )
 نشر من قبل Nicolas Barriere
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of a gamma-ray telescope based on a Laue lens offers the possibility to increase the sensitivity by more than an order of magnitude with respect to existing instruments. Laue lenses have been developed by our collaboration for several years : the main achievement of this R&D program was the CLAIRE lens prototype. Since then, the endeavour has been oriented towards the development of efficient diffracting elements (crystal slabs), the aim being to step from a technological Laue lens to a scientifically exploitable lens. The latest mission concept featuring a gamma-ray lens is the European Gamma-Ray Imager (GRI) which intends to make use of the Laue lens to cover energies from 200 keV to 1300 keV. Investigations of two promising materials, low mosaicity copper and gradient concentration silicon-germanium are presented in this paper. The measurements have been performed during three runs on beamline ID15A of the European Synchrotron Radiation Facility, and on the GAMS 4 instrument of the Institute Laue-Langevin (both in Grenoble, France) using highly monochromatic beam of energy close to 500 keV. Despite it was not perfectly homogeneous, the presented copper crystal exhibits peak reflectivity of 25% in accordance with theoretical predictions, and a mosaicity around 26 arcsec, the ideal range for the realization of a Laue lens such as GRI. Silicon-germanium featuring a constant gradient have been measured for the very first time at 500 keV. Two samples showed a quite homogeneous reflectivity reaching 26%, which is far from the 48% already observed in experimental crystals but a very encouraging beginning. This results have been used to estimate the performance of the GRI Laue lens design.

قيم البحث

اقرأ أيضاً

In the context of the LAUE project devoted to build a long focal length focusing optics for soft gamma-ray astronomy (70/100 keV to $>$600 keV), we present results of simulation of a Laue lens, based on bent crystals in different assembling configura tions (quasi-mosaic and reflection-like geometries). The main aim is to significantly overcome the sensitivity limits of the current generation of gamma-ray telescopes and improve the imaging capability.
In the context of Laue project for focusing hard X-/ soft gamma-rays, an entire Laue lens, using bent Ge(111) crystal tiles, with 40 meters curvature radius, is simulated with a focal length of 20 meters. The focusing energy band is between 80 keV an d 600 keV. The distortion of the output image of the lens on the focal plane due to the effect of crystal tile misalignment as well as the radial distortion arising from the curvature of the crystal is discussed in detail. Expected detection efficiency and instrument background is also estimated. Finally the sensitivity of the Laue lens is calculated. A quantitative analysis of the results of these simulation is also presented.
83 - Yu Song , Siqi Hu , Miao-Ling Lin 2018
We report the observations of unexpected layer-dependent, strong, and anisotropic second harmonic generations (SHGs) in atomically thin ReS2. Appreciable (negligible) SHGs are obtained from even (odd) numbers of ReS2 layers, which is opposite to the layer-dependence of SHGs in group VI transition metal dichalcogenides, such as MoS2 and WS2. The results are analyzed from ReS2s crystal structure, implying second harmonic polarizations generated from the interlayer coupling. Pumped by a telecomband laser, SHG from the bilayer ReS2 is almost one order of magnitude larger than that from the monolayer WS2. The estimated second-order nonlinear susceptibility of 900 pm/V is remarkably high among those reported in two-dimensional materials. The laser polarization dependence of ReS2s SHG is strongly anisotropic and indicates its distorted lattice structure with more unequal and non-zero second-order susceptibility elements.
215 - J. P. Huang , Y. C. Jian , 2006
On the basis of the Edward-Kornfeld formulation, we study the effective susceptibility of secondharmonic generation (SHG) in colloidal crystals, which are made of graded metallodielectric nanoparticles with an intrinsic SHG susceptibility suspended i n a host liquid. We find a large enhancement and redshift of SHG responses, which arises from the periodic structure, local field effects and gradation in the metallic cores. The optimization of the Ewald-Kornfeld formulation is also investigated.
We report the status of the HAXTEL project, devoted to perform a design study and the development of a Laue lens prototype. After a summary of the major results of the design study, the approach adopted to develop a Demonstration Model of a Laue lens is discussed, the set up described, and some results presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا