ﻻ يوجد ملخص باللغة العربية
Gauss hypergeometric functions with a dihedral monodromy group can be expressed as elementary functions, since their hypergeometric equations can be transformed to Fuchsian equations with cyclic monodromy groups by a quadratic change of the argument variable. The paper presents general elementary expressions of these dihedral hypergeometric functions, involving finite bivariate sums expressible as terminating Appells F2 or F3 series. Additionally, trigonometric expressions for the dihedral functions are presented, and degenerate cases (logarithmic, or with the monodromy group Z/2Z) are considered.
This is a brief overview of the status of the theory of elliptic hypergeometric functions to the end of 2012 written as a complementary chapter to the Russian edition of the book by G.E. Andrews, R. Askey, and R. Roy, Special Functions, Encycl. of Math. Appl. 71, Cambridge Univ. Press, 1999.
We will introduce a modified system of A-hypergeometric system (GKZ system) by applying a change of variables for Groebner deformations and study its Groebner basis and the indicial polynomials along the exceptional hypersurface.
General theory of elliptic hypergeometric series and integrals is outlined. Main attention is paid to the examples obeying properties of the classical special functions. In particular, an elliptic analogue of the Gauss hypergeometric function and som
The aim of this work is to demonstrate various an interesting recursion formulas, differential and integral operators, integration formulas, and infinite summation for each of Horns hypergeometric functions $mathrm{H}_{1}$, $mathrm{H}_{2}$, $mathrm{H
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studi