ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics revealed by correlations of time-distributed weak measurements of a single spin

133   0   0.0 ( 0 )
 نشر من قبل Ren-Bao Liu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the correlations in stochastic outputs of time-distributed weak measurements can be used to study the dynamics of an individual quantum object, with a proof-of-principle setup based on small Faraday rotation caused by a single spin in a quantum dot. In particular, the third order correlation can reveal the true spin decoherence, which would otherwise be concealed by the inhomogeneous broadening effect in the second order correlations. The viability of such approaches lies in that (1) in weak measurement the state collapse which would disturb the system dynamics occurs at a very low probability, and (2) a shot of measurement projecting the quantum object to a known basis state serves as a starter or stopper of the evolution without pumping or coherently controlling the system as otherwise required in conventional spin echo.

قيم البحث

اقرأ أيضاً

Stochastic systems feature, in general, both coherent dynamics and incoherent transitions between different states. We propose a method to identify the coherent part in the full counting statistics for the transitions. The proposal is illustrated for electron transfer through a quantum-dot spin valve, which combines quantum-coherent spin precession with electron tunneling. We show that by counting the number of transferred electrons as a function of time, it is possible to distill out the coherent dynamics from the counting statistics even in transport regimes, in which other tools such as the frequency-dependent current noise and the waiting-time distribution fail.
Probing the out-of-equilibrium dynamics of quantum matter has gained renewed interest owing to immense experimental progress in artifcial quantum systems. Dynamical quantum measures such as the growth of entanglement entropy (EE) and out-of-time orde red correlators (OTOCs) have been shown, theoretically, to provide great insight by exposing subtle quantum features invisible to traditional measures such as mass transport. However, measuring them in experiments requires either identical copies of the system, an ancilla qubit coupled to the whole system, or many measurements on a single copy, thereby making scalability extremely complex and hence, severely limiting their potential. Here, we introduce an alternate quantity $-$ the out-of-time-ordered measurement (OTOM) $-$ which involves measuring a single observable on a single copy of the system, while retaining the distinctive features of the OTOCs. We show, theoretically, that OTOMs are closely related to OTOCs in a doubled system with the same quantum statistical properties as the original system. Using exact diagonalization, we numerically simulate classical mass transport, as well as quantum dynamics through computations of the OTOC, the OTOM, and the EE in quantum spin chain models in various interesting regimes (including chaotic and many-body localized systems). Our results demonstrate that an OTOM can successfully reveal subtle aspects of quantum dynamics hidden to classical measures, and crucially, provide experimental access to them.
We detail the experimental observation of the non-equilibrium many-body phenomenon prethermalization. We study the dynamics of a rapidly and coherently split one-dimensional Bose gas. An analysis based on the use of full quantum mechanical probabilit y distributions of matter wave interference contrast reveals that the system evolves towards a quasi-steady state. This state, which can be characterized by an effective temperature, is not the final thermal equilibrium state. We compare the evolution of the system to an integrable Tomonaga-Luttinger liquid model and show that the system dephases to a prethermalized state rather than undergoing thermalization towards a final thermal equilibrium state.
Understanding the transfer of spin angular momentum is essential in modern magnetism research. A model case is the generation of magnons in magnetic insulators by heating an adjacent metal film. Here, we reveal the initial steps of this spin Seebeck effect with <27fs time resolution using terahertz spectroscopy on bilayers of ferrimagnetic yttrium-iron garnet and platinum. Upon exciting the metal with an infrared laser pulse, a spin Seebeck current $j_textrm{s}$ arises on the same ~100fs time scale on which the metal electrons thermalize. This observation highlights that efficient spin transfer critically relies on carrier multiplication and is driven by conduction electrons scattering off the metal-insulator interface. Analytical modeling shows that the electrons dynamics are almost instantaneously imprinted onto $j_textrm{s}$ because their spins have a correlation time of only ~4fs and deflect the ferrimagnetic moments without inertia. Applications in material characterization, interface probing, spin-noise spectroscopy and terahertz spin pumping emerge.
As proposed to describe putative continuous phase transitions between two ordered phases, the deconfined quantum critical point (DQCP) goes beyond the prevalent Landau-Ginzburg-Wilson (LGW) paradigm since its critical theory is not expressed in terms of the order parameters characterizing either state, but involves fractionalized degrees of freedom and an emergent symmetry. So far, great efforts have been spent on its equilibrium properties, but the nonequilibrium properties therein are largely unknown. Here we study the nonequilibrium dynamics of the DQCP via the imaginary-time evolution in the two-dimensional (2D) J-Q$_3$ model. We discover fascinating nonequilibrium scaling behaviors hinging on the process of fractionization and the dynamics of emergent symmetry associated with two length scales. Our findings not only constitute a new realm of nonequilibrium criticality in DQCP, but also offer a controllable knob by which to investigate the dynamics in strongly correlated systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا