ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and electric properties of double-perovskites and estimation of their Curie temperatures by ab initio calculations

154   0   0.0 ( 0 )
 نشر من قبل Jurgen Kubler
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

First principles electronic structure calculations have been carried out on ordered double perovskites Sr_2BBO_6 (for B = Cr or Fe and B 4d and 5d transition metal elements) with increasing number of valence electrons at the B-sites, and on Ba_2MnReO_6 as well as Ba_2FeMoO_6. The Curie temperatures are estimated ab initio from the electronic structures obtained with the local spin-density functional approximation, full-potential generalized gradient approximation and/or the LDA+U method (U - Hubbard parameter). Frozen spin-spirals are used to model the excited states needed to evaluate the spherical approximation for the Curie temperatures. In cases, where the induced moments on the oxygen was found to be large, the determination of the Curie temperature is improved by additional exchange functions between the oxygen atoms and between oxygen and B and B atoms. A pronounced systematics can be found among the experimental and/or calculated Curie temperatures and the total valence electrons of the transition metal elements.

قيم البحث

اقرأ أيضاً

The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO3, KNbO3, PbTiO3 and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their link with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study ferroelectric order when standard techniques to measure polarization are not easily applied.
We present results of a study of small stoichiometric $Cd_{n}Te_{n}$ ($1{leq}n{leq}6$) clusters and few medium sized non-stoichiometric $Cd_{m}Te_{n}$ [($m,n= 13, 16, 19$); ($m{ eq}n$)] clusters using the Density Functional formalism and projector au gmented wave method within the generalized gradient approximation. Structural properties {it viz.} geometry, bond length, symmetry and electronic properties like HOMO-LUMO gap, binding energy, ionization potential and nature of bonding {it etc.} have been analyzed. Medium sized non-stoichiometric clusters were considered as fragments of the bulk with T{$_{d}$} symmetry. It was observed that upon relaxation, the symmetry changes for the Cd rich clusters whereas the Te rich clusters retain their symmetry. The Cd rich clusters develop a HOMO-LUMO gap due to relaxation whereas there is no change in the HOMO-LUMO gap of the Te rich clusters. Thus, the symmetry of a cluster seems to be an important factor in determining the HOMO-LUMO gap.
Doping Bi$_2$Se$_3$ by magnetic ions represents an interesting problem since it may break the time reversal symmetry needed to maintain the topological insulator character. Mn dopants in Bi$_2$Se$_3$ represent one of the most studied examples here. H owever, there is a lot of open questions regarding their magnetic ordering. In the experimental literature different Curie temperatures or no ferromagnetic order at all are reported for comparable Mn concentrations. This suggests that magnetic ordering phenomena are complex and highly susceptible to different growth parameters, which are known to affect material defect concentrations. So far theory focused on Mn dopants in one possible position, and neglected relaxation effects as well as native defects. We have used ab initio methods to calculate the Bi$_2$Se$_3$ electronic structure influenced by magnetic Mn dopants, and exchange interactions between them. We have considered two possible Mn positions, the substitutional and interstitial one, and also native defects. We have found a sizable relaxation of atoms around Mn, which affects significantly magnetic interactions. Surprisingly, very strong interactions correspond to a specific position of Mn atoms separated by van der Waals gap. Based on the calculated data we performed spin dynamics simulations to examine systematically the resulting magnetic order for various defect contents. We have found under which conditions the experimentally measured Curie temperatures ${T_{rm{C}}}$ can be reproduced, noticing that interstitial Mn atoms appear to be important here. Our theory predicts the change of ${T_{rm{C}}}$ with a shift of Fermi level, which opens the way to tune the system magnetic properties by selective doping.
Numerous physical properties of CaPd3Ti4O12 (CPTO) and CaPd3V4O12 (CPVO) double perovskites have been explored based on density functional theory (DFT). The calculated structural parameters fairly agree with the experimental data to confirm their sta bility. The mechanical stability of these two compounds was clearly observed by the Born stability criteria. To rationalize the mechanical behavior, we investigate elastic constants, bulk, shear and Youngs modulus, Pughs ratio, Poissons ratio and elastic anisotropy index. The ductility index confirms that both materials are ductile in nature. The electronic band structure of CPTO and CPVO reveals the direct band gap semiconducting in nature and metallic characteristics, respectively. The calculated partial density of states indicates the strong hybridization between Pd 4d and O 2p orbital electrons for CPTO and Pd 4d and V 3d O 2p for CPVO. The study of electronic charge density map confirms the coexistence of covalent, ionic and metallic bonding for both compounds. Fermi surface calculation of CPVO ensures both electron and hole like surfaces indicating the multiple band nature. In the midst of optical properties, photoconductivity and absorption coefficient of both compounds reveal well qualitative compliance with consequences of band structure computations. Among the thermodynamic properties, the Debye temperature has been calculated to correlate its topical features including thermoelectric behavior. The studied thermoelectric transport properties of CPTO yielded the Seebeck coefficient (186 microVK-1), power factor (11.9 microWcm-1K-2) and figure of merit (ZT) value of about 0.8 at 800 K indicate that this material could be a promising candidate for thermoelectric device application.
We report ab initio calculations of the electronic band structure, the corresponding optical spectra, and the phonon dispersion relations of trigonal alpha-HgS (cinnabar). The calculated dielectric functions are compared with unpublished optical meas urements by Zallen and coworkers. The phonon dispersion relations are used to calculate the temperature and isotopic mass dependence of the specific heat which has been compared with experimental data obtained on samples with the natural isotope abundances of the elements Hg and S (natural minerals and vapor phase grown samples) and on samples prepared from isotope enriched elements by vapor phase transport. Comparison of the calculated vibrational frequencies with Raman and ir data is also presented. Contrary to the case of cubic beta-HgS (metacinnabar), the spin-orbit splitting of the top valence bands at the Gamma-point of the Brillouin zone (Delta_0) is positive, because of a smaller admixture of 5d core electrons of Hg. Calculations of the lattice parameters, and the pressure dependence of Delta_0 and the corresponding direct gap E_0~2eV are also presented. The lowest absorption edge is confirmed to be indirect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا