ﻻ يوجد ملخص باللغة العربية
The trigger system for the Auger fluorescence telescopes is implemented in hard- and software for an efficient selection of fluorescence light tracks induced by high-energy extensive air showers. The algorithm of the third stage uses the multiplicity signal of the hardware for fast rejection of lightning events with above 99% efficiency. In a second step direct muon hits in the camera and random triggers are rejected by analyzing the space-time correlation of the pixels. The trigger algorithm was tested with measured and simulated showers and implemented in the electronics of the fluorescence telescopes. A comparison to a prototype trigger without multiplicity shows the superiority of this approach, e.g. the false rejection rate is a factor 10 lower.
We present a novel method to measure precisely the relative spectral response of the fluorescence telescopes of the Pierre Auger Observatory. We used a portable light source based on a xenon flasher and a monochromator to measure the relative spectra
The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atm
The aperture of the Fluorescence Detector (FD) of the Pierre Auger Observatory is evaluated from simulated events using different detector configurations: mono, stereo, 3-FD and 4-FD. The trigger efficiency has been modeled using shower profiles with
We present a method to measure the relative spectral response of the Pierre Auger Observatory Fluorescence Detector. The calibration was done at wavelengths of 320, 337, 355, 380 and 405 nm using an end-to-end technique in which the response of all d
The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification