ﻻ يوجد ملخص باللغة العربية
We study the Brownian motion of a charged test particle driven by quantum electromagnetic fluctuations in the vacuum region near a non-dispersive and non-absorbing dielectric half-space and calculate the mean squared fluctuations in the velocity of the test particle. Our results show that a nonzero susceptibility of the dielectrics has its imprints on the velocity dispersions of the test particles. The most noteworthy feature in sharp contrast to the case of an idealized perfectly conducting interface is that the velocity dispersions in the parallel directions are no longer negative and does not die off in time, suggesting that the potentially problematic negativeness of the dispersions in those directions in the case of perfect conductors is just a result of our idealization and does not occur for real material boundaries.
The Klein-Kramers equation, governing the Brownian motion of a classical particle in quantum environment under the action of an arbitrary external potential, is derived. Quantum temperature and friction operators are introduced and at large friction
Quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics. In this work, by solving the quantum Langevin equation, we study the v
Brownian motion of a particle with an arbitrary shape is investigated theoretically. Analytical expressions for the time-dependent cross-correlations of the Brownian translational and rotational displacements are derived from the Smoluchowski equatio
The creation of matter and structure in our universe is currently described by an intricate interplay of quantum field theory and general relativity. Signatures of this process during an early inflationary period can be observed, while direct tests r
The theory of quantum Brownian motion describes the properties of a large class of open quantum systems. Nonetheless, its description in terms of a Born-Markov master equation, widely used in the literature, is known to violate the positivity of the