ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of dissipative coupled spins: decoherence and relaxation

178   0   0.0 ( 0 )
 نشر من قبل Gabriele Campagnano
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the reduced dynamics of interacting spins, each coupled to its own bath of bosons. We derive the solution in analytic form in the white-noise limit and analyze the rich behaviors in diverse limits ranging from weak coupling and/or low temperature to strong coupling and/or high temperature. We also view the one spin as being coupled to a spin-boson environment and consider the regimes in which it is effectively nonlinear, and in which it can be regarded as a resonant bosonic environment.



قيم البحث

اقرأ أيضاً

383 - G. Campagnano , A. Hamma , 2009
We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in the two cases (I) two independent bosonic baths and (II) one common bath, at temperature T. The entanglement dynamics is studied in terms of the con currence C (t) between the two spins and of the von Neumann entropy S(t) with respect to the bath, as a function of time. We prove that the system does thermalize. In the case (II) of a single bath, the existence of a decoherence-free (DFS) subspace makes entanglement dynamics very rich. We show that when the system is initially in a state with a component in the DFS the relaxation time is surprisingly long, showing the existence of semi-decoherence free subspaces. The equilibrium state in this case is not the Gibbs state. The entanglement dynamics for the single bath case is also studied as a function of temperature, coupling strength with the environment and strength of tunneling coupling. The case of the mixed state is finally shown and discussed.
It is shown that by fitting a Markovian quantum master equation to the numerical solution of the time-dependent Schrodinger equation of a system of two spin-1/2 particles interacting with a bath of up to 34 spin-1/2 particles, the former can describe the dynamics of the two-spin system rather well. The fitting procedure that yields this Markovian quantum master equation accounts for all non-Markovian effects in as much the general structure of this equation allows and yields a description that is incompatible with the Lindblad equation.
We in this paper study quantum correlations for two neutral spin-particles coupled with a single-mode optical cavity through the usual magnetic interaction. Two-spin entangled states for both antiparallel and parallel spin-polarizations are generated under the photon coherent-state assumption. Based on the quantum master equation we derive the time-dependent quantum correlation of Clauser-Horne-Shimony-Holt (CHSH) type explicitly in comparison with the well known entanglement-measure concurrence. In the two-spin singlet state, which is recognized as one eigenstate of the system, the CHSH correlation and concurrence remain in their maximum values invariant with time and independent of the average photon-numbers either. The correlation varies periodically with time in the general entangled-states for the low average photon-numbers. When the photon number increases to a certain value the oscillation becomes random and the correlations are suppressed below the Bell bound indicating the decoherence of the entangled states. In the high photon-number limit the coherence revivals periodically such that the CHSH correlation approaches the upper bound value at particular time points associated with the cavity-field period
Generating robust entanglement among solid-state spins is key for applications in quantum information processing and precision sensing. We show here a dissipative approach to generate such entanglement among the hyperfine coupled electron nuclear spi ns using the rapid optical decay of electronic excited states. The combined dark state interference effects of the optical and microwave driving fields in the presence of spontaneous emission from the short-lived excited state leads to a dissipative formation of an entangled steady state. We show that the dissipative entanglement is generated for any initial state conditions of the spins and is resilient to external field fluctuations. We analyze the scheme both for continuous and pulsed driving fields in the presence of realistic noise sources.
Engineered non-Hermitian systems featuring exceptional points can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, electronics, to atomic physics. Here we introduce and present non-Hermiti an dynamics of coupled optical parametric oscillators (OPOs) arising from phase-sensitive amplification and de-amplification, and show their distinct advantages over conventional non-Hermitian systems relying on laser gain and loss. OPO-based non-Hermitian systems can benefit from the instantaneous nature of the parametric gain, noiseless phase-sensitive amplification, and rich quantum and classical nonlinear dynamics. We show that two coupled OPOs can exhibit spectral anti-PT symmetry and an exceptional point between its degenerate and non-degenerate operation regimes. To demonstrate the distinct potentials of the coupled OPO system compared to conventional non-Hermitian systems, we present higher-order exceptional points with two OPOs, tunable Floquet exceptional points in a reconfigurable dynamic non-Hermitian system, and generation of squeezed vacuum around exceptional points, all of which are not easy to realize in other non-Hermitian platforms. Our results show that coupled OPOs are an outstanding non-Hermitian setting with unprecedented opportunities in realizing nonlinear dynamical systems for enhanced sensing and quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا