ترغب بنشر مسار تعليمي؟ اضغط هنا

On Entanglement and Separability

86   0   0.0 ( 0 )
 نشر من قبل Dhananjay Mehendale
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new necessary and sufficient condition to determine the entanglement status of an arbitrary N-qubit quantum state (maybe pure or mixed) represented by a density matrix. A necessary condition satisfied by separable bipartite quantum states was obtained by A. Peres, [1]. A. Peres showed that if a bipartite state represented by the density matrix is separable then its partial transpose is positive semidefinite and has no negative eigenvalues. In other words, if the partial transpose is not positive semidefinite and so one or more of its eigenvalues are negative then the state represented by the corresponding density matrix is entangled. It was then shown by M. Horodecki et.al, [2], that this necessary condition is also sufficient for two-by-two and two-by-three dimensional systems. However, in other dimensions, it was shown by P. Horodecki, [3], that the criterion due to A. Peres is not sufficient. In this paper, we develop a new approach and a new criterion for deciding the entanglement status of the states represented by the density matrices corresponding to N-qubit systems. We begin with a 2-qubit case and then show that these results for 2-qubit systems can be extended to N-qubit systems by proceeding along similar lines. We discuss few examples to illustrate the method proposed in this paper for testing the entanglement status of few density matrices.



قيم البحث

اقرأ أيضاً

We investigate the separability of quantum states based on covariance matrices. Separability criteria are presented for multipartite states. The lower bound of concurrence proposed in Phys. Rev. A. 75, 052320 (2007) is improved by optimizing the local orthonormal observables.
We present a review of the problem of finding out whether a quantum state of two or more parties is entangled or separable. After a formal definition of entangled states, we present a few criteria for identifying entangled states and introduce some e ntanglement measures. We also provide a classification of entangled states with respect to their usefulness in quantum dense coding, and present some aspects of multipartite entanglement.
93 - Bang-Hai Wang 2020
Quantum states are the key mathematical objects in quantum mechanics, and entanglement lies at the heart of the nascent fields of quantum information processing and computation. What determines whether an arbitrary quantum state is entangled or separ able is therefore very important for investigating both fundamental physics and practical applications. Here we show that an arbitrary bipartite state can be divided into a unique purely entangled structure and a unique purely separable structure. We show that whether a quantum state is entangled or not is determined by the ratio of its weight of the purely entangled structure and its weight of the purely separable structure. We provide a general algorithm for the purely entangled structure and the purely separable structure, and a general algorithm for the best separable approximation (BSA) decomposition, that has been a long-standing open problem. Our result implies that quantum states exist as families in theory, and that the entanglement (separability) of family members can be determined by referring to a crucial member of the family.
We introduce a weak form of the realignment separability criterion which is particularly suited to detect continuous-variable entanglement and is physically implementable (it requires linear optics transformations and homodyne detection). Moreover, w e define a family of states, called Schmidt-symmetric states, for which the weak realignment criterion reduces to the original formulation of the realignment criterion, making it even more valuable as it is easily computable especially in higher dimensions. Then, we focus in particular on Gaussian states and introduce a filtration procedure based on noiseless amplification or attenuation, which enhances the entanglement detection sensitivity. In some specific examples, it does even better than the original realignment criterion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا