ﻻ يوجد ملخص باللغة العربية
We have investigated the formation of helium droplets in two physical situations. In the first one, droplets are atomised from superfluid or normal liquid by a fast helium vapour flow. In the second, droplets of normal liquid are formed inside porous glasses during the process of helium condensation. The context, aims, and results of these experiments are reviewed, with focus on the specificity of light scattering by helium. In particular, we discuss how, for different reasons, the closeness to unity of the index of refraction of helium allows in both cases to minimise the problem of multiple scattering and obtain results which it would not be possible to get using other fluids.
Fluctuations of the interface between coexisting colloidal fluid phases have been measured with confocal microscopy. Due to a very low surface tension, the thermal motions of the interface are so slow, that a record can be made of the positions of th
We discuss the physics of embolic stroke using a minimal model of emboli moving through the cerebral arteries. Our model of the blood flow network consists of a bifurcating tree, into which we introduce particles (emboli) that halt flow on reaching a
Thermally fluctuating sheets and ribbons provide an intriguing forum in which to investigate strong violations of Hookes Law: large distance elastic parameters are in fact not constant, but instead depend on the macroscopic dimensions. Inspired by re
We propose a lattice model for RNA based on a self-interacting two-tolerant trail. Self-avoidance and elements of tertiary structure are taken into account. We investigate a simple version of the model in which the native state of RNA consists of jus
We describe a simple meanfield variational approach to study a number of properties of intrinsically stiff chains which are appropriate models for a large class of biopolymers. We present the calculation of the distribution of end-to-end distance and