ترغب بنشر مسار تعليمي؟ اضغط هنا

Forward Physics in Proton-Nucleus and Nucleus-Nucleus Collisions

179   0   0.0 ( 0 )
 نشر من قبل Jan Nemchik
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an universal treatment for a substantial nuclear suppression representing a common feature of all known reactions on nuclear targets (forward production of high-pT hadrons, production of direct photons, the Drell-Yan process, heavy flavor production, etc.). Such a suppression at large Feynman xF, corresponding to region of minimal light-cone momentum fraction variable x2 in nuclei, is tempting to interpret as a manifestation of coherence or the Color Glass Condensate. We demonstrate, however, that it is actually a simple consequence of energy conservation and takes place even at low energies, where no effects of coherence are possible. We analyze this common suppression mechanism for several processes performing model predictions in the light-cone dipole approach. Our calculations agree with data.



قيم البحث

اقرأ أيضاً

154 - J. Cepila , 2011
Prompt photons produced in a hard reaction are not accompanied with any final state interaction, either energy loss or absorption. Therefore, besides the Cronin enhancement at medium transverse momenta pT and small isotopic corrections at larger pT, one should not expect any nuclear effects. However, data from PHENIX experiment exhibit a significant large-pT suppression in central d+Au and Au+Au collisions that cannot be accompanied by coherent phenomena. We demonstrate that such an unexpected result is subject to the energy sharing problem near the kinematic limit and is universally induced by multiple initial state interactions. We describe production of photons in the color dipole approach and find a good agreement with available data in p+p collisions. Besides explanation of large-pT nuclear suppression at RHIC we present for the first time predictions for expected nuclear effects also in the LHC energy range at different rapidities. We include and analyze also a contribution of gluon shadowing as a leading twist shadowing correction modifying nuclear effects at small and medium pT.
We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initia l condition fit to deep inelastic scattering data and extended to nuclei with an optical Glauber procedure that introduces no additional parameters beyond the basic nuclear geometry. We present predictions for future forward RHIC and LHC measurements. The predictions are also compared to updated results for the nuclear modification factors for pion production, Drell-Yan dileptons and $J/psi$ mesons in the same forward kinematics, consistently calculated in the same theoretical framework. We find that leading order, running coupling high energy evolution in the CGC picture leads to a significant nuclear suppression at forward rapidities. This nuclear suppression is stronger for photons than for pions. We also discuss how this might change with next-to-leading order high energy evolution.
The distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. This linear extrapolation is applied to precisely measured Drell-Yan cross sections for 800 GeV protons incident on a variety of nuclear targets. The deviation from linear scaling in the atomic number A can be accounted for by energy degradation of the proton as it passes through the nucleus if account is taken of the time delay of particle production due to quantum coherence. We infer an average proper coherence time of 0.4 +/- 0.1 fm/c. Then we apply the linear extrapolation to measured J/psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/psi on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/psi on nuclear targets. Finally, we compare to recent J/psi data from S+U and Pb+Pb collisions at the SPS. The former are reproduced reasonably well with no new parameters, but not the latter.
174 - M. Nardi , A. Beraudo , A. De Pace 2015
We present recent results for heavy-flavor observables in nucleus-nucleus collisions at LHC energies, obtained with the POWLANG transport setup. The initial creation of c-cbar and b-bbar pairs is simulated with a perturbative QCD approach (POWHEG+PYT HIA); their propagation in the medium (created in the nucleus-nucleus or in proton-nucleus collision) is studied with the relativistic Langevin equation, here solved using weak-coupling transport coefficients. Successively, the heavy quarks hadronize in the medium. We compute the nuclear modification factor and the elliptic flow parameter of the final D mesons both in nucleus-nucleus and in (for the first time, in the POWLANG setup) proton-nucleus collisions and compare our results to experimental data.
Preliminary estimates suggest that excess dimuon production with invariant mass in the range 1.5 -- 2.5 GeV in nucleus-nucleus collisions can be explained on the basis of $eta_c$ production. This appears to be consistent with all the peripheral and c entral collision data with various nuclei such as S-U at 200 GeV/nucleon except for the central collision data on Pb-Pb at 158 GeV/nucleon. Some explanations based on glueball production for Pb-Pb data are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا