ﻻ يوجد ملخص باللغة العربية
The combined zero degree calorimeter (ZDC) is a combination of sampling quartz/tungsten electromagnetic and hadronic calorimeters. Two identical combined calorimeters are located in the LHC tunnel at CERN at the straight section ~140 m on each side of the CMS interaction vertex and between the two beam pipes. They will detect very forward photons and neutrons. ZDC information can be used for a variety of physics measurements as well as improving the collision centrality determination in heavy-ion collisions. Results are presented for ZDC performance studies with the CERN SPS H2 test beam.
The two Zero Degree Calorimeters (ZDCs) of the CMS experiment are located at $pm 140~$m from the collision point and detect neutral particles in the $|eta| > 8.3$ pseudorapidity region. This paper presents a study on the performance of the ZDC in the
The Compact Muon Solenoid (CMS) calorimeter regional trigger system is designed to detect signatures of isolated and non-isolated electrons/photons, jets, ?-leptons, and missing and total transverse energy using a deadtimeless pipelined architecture.
The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes
The MJ Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-beta decay in $^{76}$Ge. The MJ DEM comprises 44.1~kg of Ge detectors (29.7 kg enriched in $^{76}$Ge) split between two modules contained in a lo
We report on the performance of a prototype CMS Hadron Barrel Calorimeter (HCAL) module in a test beam. The prototype sampling calorimeter used copper absorber plates and scintillator tiles with wavelength shifting fibers for readout. Placing a lead