ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic cooling of a submicron-sized metallic beam

41   0   0.0 ( 0 )
 نشر من قبل Juha Teodor Muhonen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate electronic cooling of a suspended AuPd island using superconductor-insulator-normal metal tunnel junctions. This was achieved by developing a simple fabrication method for reliably releasing narrow submicron sized metal beams. The process is based on reactive ion etching and uses a conducting substrate to avoid charge-up damage and is compatible with e.g. conventional e-beam lithography, shadow-angle metal deposition and oxide tunnel junctions. The devices function well and exhibit clear cooling; up to factor of two at sub-kelvin temperatures.

قيم البحث

اقرأ أيضاً

We report on the translation and rotation of particle clusters made through the combination of spherical building blocks. These clusters present ideal model systems to study the motion of objects with complex shape. Because they could be separated in to fractions of well-defined configurations on a sufficient scale and their overall dimensions were below 300 nm, the translational and rotational diffusion coefficients of particle duplets, triplets and tetrahedrons could be determined by a combination of polarized dynamic light scattering (DLS) and depolarized dynamic light scattering (DDLS). The use of colloidal clusters for DDLS experiments overcomes the limitation of earlier experiments on the diffusion of complex objects near surfaces because the true 3D diffusion can be studied. When the exact geometry of the complex assemblies is known, different hydrodynamic models for calculating the diffusion coefficient for objects with complex shapes could be applied. Because hydrodynamic friction must be restricted to the cluster surface the so-called shell model, in which the surface is represented as a shell of small friction elements, was most suitable to describe the dynamics. A quantitative comparison of the predictions from theoretical modeling with the results obtained by DDLS showed an excellent agreement between experiment and theory.
We have studied the discrete electronic spectrum of closed metallic nanotube quantum dots. At low temperatures, the stability diagrams show a very regular four-fold pattern that allows for the determination of the electron addition and excitation ene rgies. The measured nanotube spectra are in excellent agreement with theoretical predictions based on the nanotube band structure. Our results permit the complete identification of the electron quantum states in nanotube quantum dots.
Optomechanical crystal cavities have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, bacteria and viruses. In this work we demonstrate the working principle of an optomechanical crystal cavity operatin g under ambient conditions as a sensor of submicrometer analytes by optically monitoring the frequency shift of thermally activated mechanical modes. The resonator has been specifically designed so that the cavity region supports a particular family of low modal-volume mechanical modes, commonly known as -pinch modes-. These involve the oscillation of only a couple of adjacent cavity cells that are relatively insensitive to perturbations in other parts of the resonator. The eigenfrequency of these modes decreases as the deformation is localized closer to the centre of the resonator. Thus, by identifying specific modes that undergo a frequency shift that amply exceeds the mechanical linewidth, it is possible to infer if there are particles deposited on the resonator, how many are there and their approximate position within the cavity region.
Magnetic properties with chains of hcp Co hollow spheres have been studied. The diameter of the spheres ranges from 500 to 800 nm, with a typical shell thickness of about 60 nm. The shell is polycrystalline with an average crystallite size of 20 to 3 5 nm. The blocking temperature determined by the zero-field-cooling MZFC(T) measurement at H = 90 Oe is about 325 K. The corresponding effective anisotropy is determined as, Keff = 4.6*10^4 J/m^3. In addition, the blocking temperature and the effective anisotropy determined by the analysis on HC(T) are 395 K and 5.7*10^4 J/m^3, respectively. The experimentally determined anisotropy is smaller by one order of magnitude than the magnetocrystalline anisotropy of the bulk hcp Co, which is about 3 to 5*10^5 J/m^3. A further analysis on HC(T) shows that the magnetization reversal follows a nucleation rotational mode with an effective switching volume, V* = 2.3*10^3 nm^3. The corresponding effective diameter is calculated as 16.4 nm. It is slightly larger than the coherence length of Co, about 15 nm. The possible reason for the much reduced magnetic anisotropy is discussed briefly.
Graphene nanoribbons (GNRs) are promising components in future nanoelectronics due to the large mobility of graphene electrons and their tunable electronic band gap in combination with recent experimental developments of on-surface chemistry strategi es for their growth. Here we explore a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at $theta= 60^circ$, electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50% and with almost negligible back-reflection. The splitted electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy of an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. We rationalize our findings with a simple model that suggests that electronic beam splitters can generally be realized with crossed GNRs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا