ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi surfaces in general co-dimension and a new controlled non-trivial fixed point

315   0   0.0 ( 0 )
 نشر من قبل T. Senthil
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditionally Fermi surfaces for problems in $d$ spatial dimensions have dimensionality $d-1$, i.e., codimension $d_c=1$ along which energy varies. Situations with $d_c >1$ arise when the gapless fermionic excitations live at isolated nodal points or lines. For $d_c > 1$ weak short range interactions are irrelevant at the non-interacting fixed point. Increasing interaction strength can lead to phase transitions out of this Fermi liquid. We illustrate this by studying the transition to superconductivity in a controlled $epsilon$ expansion near $d_c = 1$. The resulting non-trivial fixed point is shown to describe a scale invariant theory that lives in effective space-time dimension $D=d_c + 1$. Remarkably, the results can be reproduced by the more familiar Hertz-Millis action for the bosonic superconducting order parameter even though it lives in different space-time dimensions.

قيم البحث

اقرأ أيضاً

One of the most notorious non-Fermi liquid properties of both archetypal heavy-fermion systems [1-4] and the high-Tc copper oxide superconductors [5] is an electrical resistivity that evolves linearly with temperature, T. In the heavy-fermion superco nductor CeCoIn5 [5], this linear behaviour was one of the first indications of the presence of a zero-temperature instability, or quantum critical point. Here, we report the observation of a unique control parameter of T-linear scattering in CeCoIn5, found through systematic chemical substitutions of both magnetic and non-magnetic rare-earth, R, ions into the Ce sub-lattice. We find that the evolution of inelastic scattering in Ce1-xRxCoIn5 is strongly dependent on the f-electron configuration of the R ion, whereas two other key properties -- Cooper-pair breaking and Kondo-lattice coherence -- are not. Thus, T-linear resistivity in CeCoIn5 is intimately related to the nature of incoherent scattering centers in the Kondo lattice, which provides insight into the anomalous scattering rate synonymous with quantum criticality [7].
The evolution of the Fermi surface of CeRh$_{1-x}$Co$_x$In$_5$ was studied as a function of Co concentration $x$ via measurements of the de Haas-van Alphen effect. By measuring the angular dependence of quantum oscillation frequencies, we identify a Fermi surface sheet with $f$-electron character which undergoes an abrupt change in topology as $x$ is varied. Surprisingly, this reconstruction does not occur at the quantum critical concentration $x_c$, where antiferromagnetism is suppressed to T=0. Instead we establish that this sudden change occurs well below $x_c$, at the concentration x ~ 0.4 where long range magnetic order alters its character and superconductivity appears. Across all concentrations, the cyclotron effective mass of this sheet does not diverge, suggesting that critical behavior is not exhibited equally on all parts of the Fermi surface.
We report the results of the angular-dependent magnetoresistance oscillations (AMROs), which can determine the shape of bulk Fermi surfaces in quasi-two-dimensional (Q2D) systems, in a highly hole-doped Fe-based superconductor KFe$_2$As$_2$ with $T_c approx$ 3.7 K. From the AMROs, we determined the two Q2D FSs with rounded-square cross sections, corresponding to 12% and 17% of the first Brillouin zone. The rounded-squared shape of the FS cross section is also confirmed by the analyses of the interlayer transport under in-plane fields. From the obtained FS shape, we infer the character of the 3d orbitals that contribute to the FSs.
We revisit the interplay between superconductivity and quantum criticality when thermal effects from virtual static bosons are included. These contributions, which arise from an effective theory compactified on the thermal circle, strongly affect fie ld-theoretic predictions even at small temperatures. We argue that they are ubiquitous in a wide variety of models of non-Fermi liquid behavior, and generically produce a parametric suppression of superconducting instabilities. We apply these ideas to non-Fermi liquids in $d=2$ space dimensions, obtained by coupling a Fermi surface to a Landau-damped soft boson. Extending previous methods developed for $d=3-epsilon$ dimensions, we determine the dynamics and phase diagram. It features a naked quantum critical point, separated by a continuous infinite order transition from a superconducting phase with strong non-Fermi liquid corrections. We also highlight the relevance of these effects for (numerical) experiments on non-Fermi liquids.
84 - Sujay Ray , Tanmoy Das 2017
Various angle-dependent measurements in hole-doped cuprates suggested that Non-Fermi liquid (NFL) and Fermi-liquid (FL) self-energies coexist in the Brillouin zone. Moreover, it is also found that NFL self-energies survive up to the overdoped region where the resistivity features a global FL-behavior. To address this problem, here we compute the momentum dependent self-energy from a single band Hubbard model. The self-energy is calculated self-consistently by using a momentum-dependent density-fluctuation (MRDF) method. One of our main result is that the computed self-energy exhibits a NFL-like frequency dependence only in the antinodal region, and FL-like behavior elsewhere, and retains its analytic form at all momenta and dopings. The dominant source of NFL self-energy in the antinodal region stems from the self-energy-dressed fluctuations between the itinerant and localized densities as self-consistency is invoked. We also calculate the DC conductivity by including the full momentum dependent self-energy. We find that the resistivity-temperature exponent n becomes 1 near the optimal doping, while the NFL self-energy occupies largest momentum-space volume. Surprisingly, even in the NFL state near the optimal doping, the nodal region contains FL-like self-energies; while in the under- and over-dopings (n ~ 2), the antinodal region remains NFL-like. These results highlight the non-local correlation physics in cuprates and in other similar intermediately correlated materials, where a direct link between the microscopic single-particle spectral properties and the macroscopic transport behavior can not be well established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا