ﻻ يوجد ملخص باللغة العربية
In nuclear reactions induced by hadrons and ions of high energies, nuclei can disintegrate into many fragments during a short time (~100 fm/c). This phenomenon known as nuclear multifragmentation was under intensive investigation last 20 years. It was established that multifragmentation is an universal process taking place in all reactions when the excitation energy transferred to nuclei is high enough, more than 3 MeV per nucleon, independently on the initial dynamical stage of the reactions. Very known compound nucleus decay processes (sequential evaporation and fission), which are usual for low energies, disappear and multifragmentation dominates at high excitation energy. For this reason, calculation of multifragmentation must be carried on in all cases when production of highly excited nuclei is expected, including spallation reactions. From the other hand, one can consider multifragmentation as manifestation of the liquid-gas phase transition in finite nuclei. This gives way for studying nuclear matter at subnuclear densities and for applications of properties of nuclear matter extracted from multifragmentation reactions in astrophysics. In this contribution, the Statistical Multifragmentation Model (SMM), which combines the compound nucleus processes at low energies and multifragmentation at high energies, is described. The most important ingredients of the model are discussed.
The ratio of pairing-energy coefficient to temperature ($a_{p}/T$) of neutron-rich fragments produced in spallation reactions has been investigated by adopting an isobaric yield ratio method deduced in the framework of a modified Fisher model. A seri
The Bayesian neural network (BNN) method is used to construct a predictive model for fragment prediction of proton induced spallation reactions with the guidance of a simplified EPAX formula. Compared to the experimental data, it is found that the BN
We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in
We studied the complete dynamics of the proton-induced spallation process with the microscopic framework of the Constrained Molecular Dynamics (CoMD) Model. We performed calculations of proton-induced spallation reactions on 181Ta, 208Pb, and 238U ta
The $^9$C nucleus and related capture reaction, ${^8mathrm{B}}(p,gamma){^9mathrm{C}}$, have been intensively studied with an astrophysical interest. Due to the weakly-bound nature of $^9$C, its structure is likely to be described as the three-body ($