ﻻ يوجد ملخص باللغة العربية
We study the problem of emph{local search} on a graph. Given a real-valued black-box function f on the graphs vertices, this is the problem of determining a local minimum of f--a vertex v for which f(v) is no more than f evaluated at any of vs neighbors. In 1983, Aldous gave the first strong lower bounds for the problem, showing that any randomized algorithm requires $Omega(2^{n/2 - o(1)})$ queries to determine a local minima on the n-dimensional hypercube. The next major step forward was not until 2004 when Aaronson, introducing a new method for query complexity bounds, both strengthened this lower bound to $Omega(2^{n/2}/n^2)$ and gave an analogous lower bound on the quantum query complexity. While these bounds are very strong, they are known only for narrow families of graphs (hypercubes and grids). We show how to generalize Aaronsons techniques in order to give randomized (and quantum) lower bounds on the query complexity of local search for the family of vertex-transitive graphs. In particular, we show that for any vertex-transitive graph G of N vertices and diameter d, the randomized and quantum query complexities for local search on G are $Omega(N^{1/2}/dlog N)$ and $Omega(N^{1/4}/sqrt{dlog N})$, respectively.
While recent work suggests that quantum computers can speed up the solution of semidefinite programs, little is known about the quantum complexity of more general convex optimization. We present a quantum algorithm that can optimize a convex function
We prove lower bounds on the error probability of a quantum algorithm for searching through an unordered list of N items, as a function of the number T of queries it makes. In particular, if T=O(sqrt{N}) then the error is lower bounded by a constant.
The goal of the ordered search problem is to find a particular item in an ordered list of n items. Using the adversary method, Hoyer, Neerbek, and Shi proved a quantum lower bound for this problem of (1/pi) ln n + Theta(1). Here, we find the exact va
We generalise the standard constructions of a Cayley graph in terms of a group presentation by allowing some vertices to obey different relators than others. The resulting notion of presentation allows us to represent every vertex transitive graph. A
Shors and Grovers famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and spec