ترغب بنشر مسار تعليمي؟ اضغط هنا

On Information Rates of the Fading Wyner Cellular Model via the Thouless Formula for the Strip

197   0   0.0 ( 0 )
 نشر من قبل Nathan Levy
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the theory of random Schrodinger operators to the analysis of multi-users communication channels similar to the Wyner model, that are characterized by short-range intra-cell broadcasting. With $H$ the channel transfer matrix, $HH^dagger$ is a narrow-band matrix and in many aspects is similar to a random Schrodinger operator. We relate the per-cell sum-rate capacity of the channel to the integrated density of states of a random Schrodinger operator; the latter is related to the top Lyapunov exponent of a random sequence of matrices via a version of the Thouless formula. Unlike related results in classical random matrix theory, limiting results do depend on the underlying fading distributions. We also derive several bounds on the limiting per-cell sum-rate capacity, some based on the theory of random Schrodinger operators, and some derived from information theoretical considerations. Finally, we get explicit results in the high-SNR regime for some particular cases.

قيم البحث

اقرأ أيضاً

We generalize Thouless bandwidth formula to its n-th moment. We obtain a closed expression in terms of polygamma, zeta and Euler numbers.
223 - Arthur Cunha , Minh Do , 2009
The {it plenoptic function} (Adelson and Bergen, 91) describes the visual information available to an observer at any point in space and time. Samples of the plenoptic function (POF) are seen in video and in general visual content, and represent larg e amounts of information. In this paper we propose a stochastic model to study the compression limits of the plenoptic function. In the proposed framework, we isolate the two fundamental sources of information in the POF: the one representing the camera motion and the other representing the information complexity of the reality being acquired and transmitted. The sources of information are combined, generating a stochastic process that we study in detail. We first propose a model for ensembles of realities that do not change over time. The proposed model is simple in that it enables us to derive precise coding bounds in the information-theoretic sense that are sharp in a number of cases of practical interest. For this simple case of static realities and camera motion, our results indicate that coding practice is in accordance with optimal coding from an information-theoretic standpoint. The model is further extended to account for visual realities that change over time. We derive bounds on the lossless and lossy information rates for this dynamic reality model, stating conditions under which the bounds are tight. Examples with synthetic sources suggest that in the presence of scene dynamics, simple hybrid coding using motion/displacement estimation with DPCM performs considerably suboptimally relative to the true rate-distortion bound.
The $L$-link binary Chief Executive Officer (CEO) problem under logarithmic loss is investigated in this paper. A quantization splitting technique is applied to convert the problem under consideration to a $(2L-1)$-step successive Wyner-Ziv (WZ) prob lem, for which a practical coding scheme is proposed. In the proposed scheme, low-density generator-matrix (LDGM) codes are used for binary quantization while low-density parity-check (LDPC) codes are used for syndrome generation; the decoder performs successive decoding based on the received syndromes and produces a soft reconstruction of the remote source. The simulation results indicate that the rate-distortion performance of the proposed scheme can approach the theoretical inner bound based on binary-symmetric test-channel models.
An $l$-link binary CEO problem is considered in this paper. We present a practical encoding and decoding scheme for this problem employing the graph-based codes. A successive coding scheme is proposed for converting an $l$-link binary CEO problem to the $(2l-1)$ single binary Wyner-Ziv (WZ) problems. By using the compound LDGM-LDPC codes, the theoretical bound of each binary WZ is asymptotically achievable. Our proposed decoder successively decodes the received data by employing the well-known Sum-Product (SP) algorithm and leverages them to reconstruct the source. The sum-rate distortion performance of our proposed coding scheme is compared with the theoretical bounds under the logarithmic loss (log-loss) criterion.
We study communication systems over band-limited Additive White Gaussian Noise (AWGN) channels in which the transmitter output is constrained to be symmetric binary (bi-polar). In this work we improve the original Ozarov-Wyner-Ziv (OWZ) lower bound o n capacity by introducing a new achievability scheme with two advantages over the studied OWZ scheme which is based on peak-power constrained pulse-amplitude modulation. Our scheme achieves a moderately improved information rate and it does so with much less sign transitions of the binary signal. The gap between the known upper-bound based on spectral constrains of bi-polar signals and our achievable lower bound is reduced to 0.86 bits per Nyquist interval at high SNR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا