ترغب بنشر مسار تعليمي؟ اضغط هنا

NSV 13983: A New Dwarf Nova in the Period Gap

157   0   0.0 ( 0 )
 نشر من قبل Carlos Contreras
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. NSV 13983 is catalogued as a dwarf nova based on a reported outburst from 2005. The system has not yet been studied spectroscopically. We attempt to confirm its nature as a dwarf nova and determine its orbital period. Methods. We derive the orbital period by using time-resolved spectroscopic data to measure radial velocities. Results. The average spectrum shows evidence that the system is a dwarf nova in quiescence. The radial velocity curves derived from measurements of the spectral lines Halpha and Hbeta, show a clear modulation with a period of 2.76 h. This places NSV 13983 below the upper edge of the gap in the period distribution of cataclysmic variables, implying that it is the 14th dwarf nova in the gap.



قيم البحث

اقرأ أيضاً

Context: We present results of an extensive world-wide observing campaign of MN Draconis. Aims: MN Draconis is a poorly known active dwarf nova in the period gap and is one of the only two known cases of period gap SU UMa objects showing the negati ve superhumps. Photometric behaviour of MN Draconis poses a challenge for existing models of the superhump and superoutburst mechanisms. Therefore, thorough investigation of peculiar systems, such as MN Draconis, is crucial for our understanding of evolution of the close binary stars. Methods: To measure fundamental parameters of the system, we collected photometric data in October 2009, June-September 2013 and June-December 2015. Analysis of the light curves, $O-C$ diagrams and power spectra was carried out. Results: During our three observational seasons we detected four superoutburts and several normal outbursts. Based on the two consecutive superoutbursts detected in 2015, the supercycle length was derived P_sc = 74 +/- 0.5 days and it has been increasing with a rate of P_dot = 3.3 x 10^(-3) during last twelve years. Based on the positive and negative superhumps we calculated the period excess epsilon = 5.6% +/- 0.1%, the period deficit epsilon_ = 2.5% +/- 0.6%, and in result, the orbital period P_orb = 0.0994(1) days (143.126 +/- 0.144 min). We updated the basic light curve parameters of MN Draconis. Conclusions: MN Draconis is the first discovered SU UMa system in the period gap with increasing supercycle length.
Results of the CCD observations of CzeV404 Her are displayed. During the season of June-August 2014 we detected one outburst and one superoutburst of the star. Clear superhumps with the period of P_sh=0.10472(2) days were observed. The superhump peri od was decreasing with a high value of P_dot=-2.43(8) x 10^(-4). For 17 eclipses, we calculated an orbital period with the value of P_orb=0.0980203(6) days which indicates that CzeV404 Her belongs to period gap objects and it is the longest orbital period eclipsing SU UMa star. Based on superhump and orbital period determinations, the period excess 6.8 % +/- 0.02 % and the mass ratio q ~ 0.32 of the system were obtained.
We present time-resolved CCD photometry of a dwarf nova NSV 4838 (UMa 8, SDSS J102320.27+440509.8) during the 2005 June and 2007 February outburst. Both light curves showed superhumps with a mean period of 0.0699(1) days for the 2005 outburst and 0.0 69824(83) days for the 2007 outburst, respectively. Using its known orbital period of 0.0678 days, we estimated the mass ratio of the system to be $q$=0.13 based on an empirical relation. Although the majority of SU UMa-type dwarf novae having similar superhump periods show negative period derivatives, we found that the superhump period increased at $dot{P}$ / $P_{rm sh}$=+7(+3, -4)$times10^{-5}$ during the 2007 superoutburst. We also investigated long-term light curves of NSV 4838, from which we derived 340 days as a supercycle of this system.
We report on our photometric observations of the 2016 superoutburst of ASASSN-16eg. This object showed a WZ Sge-type superoutburst with prominent early superhumps with a period of 0.075478(8) d and a post-superoutburst rebrightening. During the super outburst plateau, it showed ordinary superhumps with a period of 0.077880(3) d and a period derivative of 10.6(1.1) $times$ 10$^{-5}$ in stage B. The orbital period ($P_{rm orb}$), which is almost identical with the period of early superhumps, is exceptionally long for a WZ Sge-type dwarf nova. The mass ratio ($q$ = $M_2/M_1$) estimated from the period of developing (stage A) superhumps is 0.166(2), which is also very large for a WZ Sge-type dwarf nova. This suggests that the 2:1 resonance can be reached in such high-$q$ systems, contrary to our expectation. Such conditions are considered to be achieved if the mass-transfer rate is much lower than those in typical SU UMa-type dwarf novae that have comparable orbital periods to ASASSN-16eg and a resultant accumulation of a large amount of matter on the disk is realized at the onset of an outburst. We examined other candidates of long-period WZ Sge-type dwarf novae for their supercycles, which are considered to reflect the mass-transfer rate, and found that V1251 Cyg and RZ Leo have longer supercycles than those of other WZ Sge-type dwarf novae. This result indicates that these long-period objects including ASASSN-16eg have a low mass-transfer rate in comparison to other WZ Sge-type dwarf novae.
322 - T. Kato 2002
We detected four outbursts of V359 Cen (possible nova discovered in 1939) between 1999 and 2002. Time-resolved CCD photometry during two outbursts (1999 and 2002) revealed that V359 Cen is actually a long-period SU UMa-type dwarf nova with a mean sup erhump period of 0.08092(1) d. We identified its supercycle length as 307-397 d. This secure identification of the superhump period precludes the previously supposed possibility that V359 Cen could be related to a WZ Sge-type system with a long persistence of late superhumps. The outburst characteristics of V359 Cen are, however, rather unusual in its low occurrence of normal outbursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا