ﻻ يوجد ملخص باللغة العربية
A rich variety of specific multidomain textures recently observed in antiferromagnetically coupled multilayers with perpendicular anisotropy include regular (equilibrium) multidomain states as well as different types of topological magnetic defects. Within a phenomenological theory we have classified and analyzed the possible magnetic defects in the antiferromagnetic ground state and determine their structures. We have derived the optimal sizes of the defects as functions of the antiferromagnetic exchange, the applied magnetic field, and geometrical parameters of the multilayer. The calculated magnetic phase diagrams show the existence regions for all types of magnetic defects. Experimental investigations of the remanent states (observed after different magnetic pre-history) in [Co/Pt]/Ru multilayers with wedged Co layers reveal a corresponding succession of different magnetic defect domain types.
In antiferromagnetically coupled multilayers with perpendicular anisotropy unusual multidomain textures can be stabilized due to a close competition between long-range demagnetization fields and short-range interlayer exchange coupling. In particul
Antiferromagnetically coupled multilayers with perpendicular anisotropy, as [CoPt]/Ru, Co/Ir, Fe/Au, display ferromagnetic stripe phases as the ground states. It is theoretically shown that the antiferromagnetic interlayer exchange causes a relative
Stripe domains are studied in perpendicular magnetic anisotropy films nanostructured with a periodic thickness modulation that induces the lateral modulation of both stripe periods and inplane magnetization. The resulting system is the 2D equivalent
Magnetic lateral multilayers have been fabricated on weak perpendicular magnetic anisotropy amorphous Nd-Co films in order to perform a systematic study on the conditions for controlled nucleation of topological defects within their magnetic stripe d
For antiferromagnetically coupled Fe/Cr multilayers the low field contribution to the resistivity, which is caused by the domain walls, is strongly enhanced at low temperatures. The low temperature resistivity varies according to a power law with the