ﻻ يوجد ملخص باللغة العربية
Using time-reversal, we introduce a stochastic integral for zero-energy additive functionals of symmetric Markov processes, extending earlier work of S. Nakao. Various properties of such stochastic integrals are discussed and an It^{o} formula for Dirichlet processes is obtained.
We describe stochastic calculus in the context of processes that are driven by an adapted point process of locally finite intensity and are differentiable between jumps. This includes Markov chains as well as non-Markov processes. By analogy with It^
We construct a family of genealogy-valued Markov processes that are induced by a continuous-time Markov population process. We derive exact expressions for the likelihood of a given genealogy conditional on the history of the underlying population pr
This paper describes the structure of solutions to Kolmogorovs equations for nonhomogeneous jump Markov processes and applications of these results to control of jump stochastic systems. These equations were studied by Feller (1940), who clarified in
We obtain moment and Gaussian bounds for general Lipschitz functions evaluated along the sample path of a Markov chain. We treat Markov chains on general (possibly unbounded) state spaces via a coupling method. If the first moment of the coupling tim
This paper addresses the question of predicting when a positive self-similar Markov process X attains its pathwise global supremum or infimum before hitting zero for the first time (if it does at all). This problem has been studied in Glover et al. (