ﻻ يوجد ملخص باللغة العربية
Strong longitudinal color flux fields will be created in the initial stage of high-energy nuclear collisions. We investigate analytically time evolution of such boost-invariant color fields from Abelian-like initial conditions, and next examine stability of the boost-invariant configurations against rapidity dependent fluctuations. We find that the magnetic background field has an instability induced by the lowest Landau level whose amplitude grows exponentially. For the electric background field there is no apparent instability although pair creations due to the Schwinger mechanism should be involved.
A homogeneous color magnetic field is known to be unstable for the fluctuations perpendicular to the field in the color space (the Nielsen-Olesen instability). We argue that these unstable modes, exponentially growing, generate an azimuthal magnetic
Based on the Sturm-Liouville eigenvalue problem, we develop a general analytic technique to investigate the excited states of the holographic superconductors. By including more higher order terms in the expansion of the trial function, we observe tha
We utilize known exact analytic solutions of perfect fluid hydrodynamics to analytically calculate the polarization of baryons produced in heavy ion collisions. Assuming local thermodynamical equilibrium also for spin degrees of freedom, baryons get
We report on a numerical study of the Boltzmann equation including $2leftrightarrow 2$ scatterings of gluons and quarks in an overoccupied Glasma undergoing longitudinal expansion. We find that when a cascade of gluon number to the infrared occurs, c
A short analytical review of the main results of the DSPIN-11 Workshop (JINR, Dubna, September 20--24, 2011) is given.