ترغب بنشر مسار تعليمي؟ اضغط هنا

Alternative fidelity measure for quantum states

194   0   0.0 ( 0 )
 نشر من قبل Paulo Mendonca
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an alternative fidelity measure (namely, a measure of the degree of similarity) between quantum states and benchmark it against a number of properties of the standard Uhlmann-Jozsa fidelity. This measure is a simple function of the linear entropy and the Hilbert-Schmidt inner product between the given states and is thus, in comparison, not as computationally demanding. It also features several remarkable properties such as being jointly concave and satisfying all of Jozsas axioms. The trade-off, however, is that it is supermultiplicative and does not behave monotonically under quantum operations. In addition, new metrics for the space of density matrices are identified and the joint concavity of the Uhlmann-Jozsa fidelity for qubit states is established.



قيم البحث

اقرأ أيضاً

Applications of quantum technology often require fidelities to quantify performance. These provide a fundamental yardstick for the comparison of two quantum states. While this is straightforward in the case of pure states, it is much more subtle for the more general case of mixed quantum states often found in practice. A large number of different proposals exist. In this review, we summarize the required properties of a quantum fidelity measure, and compare them, to determine which properties each of the different measures has. We show that there are large classes of measures that satisfy all the required properties of a fidelity measure, just as there are many norms of Hilbert space operators, and many measures of entropy. We compare these fidelities, with detailed proofs of their properties. We also summarize briefly the applications of these measures in teleportation, quantum memories, quantum computers, quantum communications, and quantum phase-space simulations.
174 - Zhihao Ma , Fu-Lin Zhang , 2009
Fidelity plays an important role in quantum information theory. In this letter, we introduce new metric of quantum states induced by fidelity, and connect it with the well-known trace metric, Sine metric and Bures metric for the qubit case. The metri c character is also presented for the qudit (i.e., $d$-dimensional system) case. The CPT contractive property and joint convex property of the metric are also studied.
Purity and coherence of a quantum state are recognized as useful resources for various information processing tasks. In this article, we propose a fidelity based valid measure of purity and coherence monotone and establish a relationship between them . This formulation of coherence is extended to quantum correlation relative to measurement. We have also studied the role of weak measurement on purity.
Noise is the price to pay when trying to clone or amplify arbitrary quantum states. The quantum noise associated to linear phase-insensitive amplifiers can only be avoided by relaxing the requirement of a deterministic operation. Here we present the experimental realization of a probabilistic noiseless linear amplifier that is able to amplify coherent states at the highest level of effective gain and final state fidelity ever reached. Based on a sequence of photon addition and subtraction, and characterized by a significant amplification and low distortions, this high-fidelity amplification scheme may become an essential tool for quantum communications and metrology, by enhancing the discrimination between partially overlapping quantum states or by recovering the information transmitted over lossy channels.
We consider the characterization of quantum superposition states beyond the pattern dead and alive. We propose a measure that is applicable to superpositions of multiple macroscopically distinct states, superpositions with different weights as well a s mixed states. The measure is based on the mutual information to characterize the distinguishability between multiple superposition states. This allows us to overcome limitations of previous proposals, and to bridge the gap between general measures for macroscopic quantumness and measures for Schrodinger-cat type superpositions. We discuss a number of relevant examples, provide an alternative definition using basis-dependent quantum discord and reveal connections to other proposals in the literature. Finally, we also show the connection between the size of quantum states as quantified by our measure and their vulnerability to noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا