ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio coupled-cluster and configuration interaction calculations for 16-O using V_UCOM

128   0   0.0 ( 0 )
 نشر من قبل Robert Roth
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the ground-state energy of 16-O obtained with the realistic V_UCOM interaction as a test case, we present a comprehensive comparison of different configuration interaction (CI) and coupled-cluster (CC) methods, analyzing the intrinsic advantages and limitations of each of the approaches. In particular, we use the importance-truncated (IT) CI and no-core shell model (NCSM) schemes with up to 4-particle-4-hole (4p4h) excitations as well as the size extensive CC methods with a complete treatment of one- and two-body clusters (CCSD) and a non-iterative treatment of connected three-body clusters via the completely renormalized correction to the CCSD energy defining the CR-CC(2,3) approach. We discuss the impact of the center-of-mass contaminations, the choice of the single-particle basis, and size-extensivity on the resulting energies. When the IT-CI and IT-NCSM methods include the 4p4h excitations and when the CC calculations include the 1p1h, 2p2h, and 3p3h clusters, as in the CR-CC(2,3) approach, we observe an excellent agreement among the different methodologies. This shows that despite their individual limitations, the IT-CI, IT-NCSM, and CC methods can provide precise and consistent ab initio nuclear structure predictions. Furthermore, the IT-CI, IT-NCSM, and CC ground-state energy values obtained with 16-O are in good agreement with the experimental value, proving that the V_UCOM two-body interaction allows for a realistic description of binding energies for heavier nuclei and that all of the methods used in this study account for most of the relevant particle correlation effects.

قيم البحث

اقرأ أيضاً

185 - M. Wloch 2005
We report converged results for the ground and excited states and matter density of 16-O using realistic two-body nucleon-nucleon interactions and coupled-cluster methods and formalism developed in quantum chemistry. Most of the binding is obtained w ith the coupled-cluster singles and doubles approach. Additional binding due to three-body clusters (triples) is minimal. The coupled-cluster method with singles and doubles provides a good description of the matter density, charge radius, charge form factor, and excited states of a 1-particle-1-hole nature, but it cannot describe the first excited 0+ state. Incorporation of triples has no effect on the latter finding.
94 - J.R. Gour 2005
We study the ground and low-lying excited states of O-15, O-17, N-15, and F-17 using modern two-body nucleon-nucleon interactions and the suitably designed variants of the ab initio equation-of-motion coupled-cluster theory aimed at an accurate descr iption of systems with valence particles and holes. A number of properties of O-15, O-17, N-15, and F-17, including ways the energies of ground and excited states of valence systems around O-16 change as functions of the number of nucleons, are correctly reproduced by the equation-of-motion coupled-cluster calculations. Within a harmonic oscillator basis and large effective model spaces, our results are converged for the chosen two-body Hamiltonians. Thus, all disagreements with experiment are, most likely, due to the degrees of freedom such as three-body interactions not accounted for in our effective two-body Hamiltonians. In particular, the calculated binding energies of O-15/N-15 and O-17/F-17 enable us to rationalize the discrepancy between the experimental and recently published [Phys. Rev. Lett. 94, 212501 (2005)] equation-of-motion coupled-cluster excitation energies for the Jpi=3- state of O-16. The results demonstrate the feasibility of the equation-of-motion coupled-cluster methods to deal with valence systems around closed-shell nuclei and to provide precise results for systems beyond A=16.
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio app roaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the $J^pi = {1/2}^-,{3/2}^-,{7/2}^-,{3/2}^+$ states in $^{17,23,25}$O, and - contrary to naive shell-model expectations - the level ordering of the $J^pi = {3/2}^+,{5/2}^+,{9/2}^+$ states in $^{53,55,61}$Ca.
We demonstrate the capability of coupled-cluster theory to compute the Coulomb sum rule for the $^4$He and $^{16}$O nuclei using interactions from chiral effective field theory. We perform several checks, including a few-body benchmark for $^4$He. We provide an analysis of the center-of-mass contaminations, which we are able to safely remove. We then compare with other theoretical results and experimental data available in the literature, obtaining a fair agreement. This is a first and necessary step towards initiating a program for computing neutrino-nucleus interactions from first principles and supporting the experimental long-baseline neutrino program with a state-of-the-art theory that can reach medium-mass nuclei.
We propose a novel storage scheme for three-nucleon (3N) interaction matrix elements relevant for the normal-ordered two-body approximation used extensively in ab initio calculations of atomic nuclei. This scheme reduces the required memory by approx imately two orders of magnitude, which allows the generation of 3N interaction matrix elements with the standard truncation of $E_{3max}=28$, well beyond the previous limit of 18. We demonstrate that this is sufficient to obtain ground-state energies in $^{132}$Sn converged to within a few MeV with respect to the $E_{3max}$ truncation. In addition, we study the asymptotic convergence behavior and perform extrapolations to the un-truncated limit. Finally, we investigate the impact of truncations made when evolving free-space 3N interactions with the similarity renormalization group. We find that the contribution of blocks with angular momentum $J_{rm rel}>9/2$ is dominated by a basis-truncation artifact which vanishes in the large-space limit, so these computationally expensive components can be neglected. For the two sets of nuclear interactions employed in this work, the resulting binding energy of $^{132}$Sn agrees with the experimental value within theoretical uncertainties. This work enables converged ab initio calculations of heavy nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا