ﻻ يوجد ملخص باللغة العربية
The low-energy S-wave component of the decay $D^+ to K^- pi^+ pi^+$ is studied by means of a chiral SU(3)XSU(3) effective theory. As far as the primary vertex is concerned, we allow for the possibility of either direct production of three pseudoscalar mesons or a meson and a scalar resonance. Special attention is paid to final state interactions associated with elastic meson-meson scattering. The corresponding two-body amplitude is unitarized by ressumming s-channel diagrams and can be expressed in terms of the usal phase shifts $delta$. This procedure preserves the chiral properties of the amplitude at low-energies. Final state interactions also involve another phase $omega$, which describes intermediate two-meson propagation and is theoretically unambiguous. This phase is absent in the K-matrix approximation. Partial contributions to the decay amplitude involve a real term, another one with phase $delta$ and several others with phases $delta+omega$. Our main result is a simple and almost model independent chiral generalization of the usual Breit-Wigner expression, suited to be used in analyses of production data involving scalar resonances.
We propose a model for $D^+ to pi^+ pi^- pi^+$ decays following experimental results which indicate that the two-pion interaction in the $S$-wave is dominated by the scalar resonances $f_0(600)/sigma$ and $f_0(980)$. The weak decay amplitude for $D^+
We study the Dalitz plot of the decay D^+ --> K^- pi^+ pi^+ with a sample of 15090 events from Fermilab experiment E791. Modeling the decay amplitude as the coherent sum of known K pi resonances and a uniform nonresonant term, we do not obtain an acc
Using $2.93 rm fb^{-1}$ of $e^+e^-$ collision data collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, the first observation of the doubly Cabibbo-suppressed decay $D^+to K^+pi^+pi^-pi^0$ is reported. After removing decays tha
We briefly review the recent results obtained by Fermilab experiment E791 on the Dalitz plot analysis of the decay D+ -> K- pi+ pi+, where indication for a light Kpi scalar resonance, the kappa, was found. We also present preliminary studies providin
The N*(1440) -> N pi pi decay is studied by making use of the chiral reduction formula. This formula suggests a scalar-isoscalar pion-baryon contact interaction which is absent in the recent study of Hern{a}ndez et al. The contact interaction is intr