ترغب بنشر مسار تعليمي؟ اضغط هنا

Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity

56   0   0.0 ( 0 )
 نشر من قبل Joseph Gallagher
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have obtained optical spectra of 29 early-type (E/S0) galaxies that hosted type Ia supernovae (SNe Ia). We have measured absorption-line strengths and compared them to a grid of models to extract the relations between the supernova properties and the luminosity-weighted age/composition of the host galaxies. The same analysis was applied to a large number of early-type field galaxies selected from the SDSS spectroscopic survey. We find no difference in the age and abundance distributions between the field galaxies and the SN Ia host galaxies. We do find a strong correlation suggesting that SNe Ia in galaxies whose populations have a characteristic age greater than 5 Gyr are ~ 1 mag fainter at V(max) than those found in galaxies with younger populations. However, the data cannot discriminate between a smooth relation connecting age and supernova luminosity or two populations of SN Ia progenitors. We find that SN Ia distance residuals in the Hubble diagram are correlated with host-galaxy metal abundance, consistent with the predictions of Timmes, Brown & Truran (2003). The data show that high iron abundance galaxies host less-luminous supernovae. We thus conclude that the time since progenitor formation primarily determines the radioactive Ni production while progenitor metal abundance has a weaker influence on peak luminosity, but one not fully corrected by light-curve shape and color fitters. Assuming no selection effects in discovering SNe Ia in local early-type galaxies, we find a higher specific SN Ia rate in E/S0 galaxies with ages below 3 Gyr than in older hosts. The higher rate and brighter luminosities seen in the youngest E/S0 hosts may be a result of recent star formation and represents a tail of the prompt SN Ia progenitors.

قيم البحث

اقرأ أيضاً

Timmes, Brown & Truran found that metallicity variations could theoretically account for a 25% variation in the mass of 56Ni synthesized in Type Ia supernovae (SNe Ia), and thus account for a large fraction of the scatter in observed SN Ia luminositi es. Higher-metallicity progenitors are more neutron-rich, producing more stable burning products relative to radioactive 56Ni. We develop a new method for estimating bolometric luminosity and 56Ni yield in SNe Ia and use it to test the theory with data from the Supernova Legacy Survey. We find that the average 56Ni yield does drop in SNe Ia from high metallicity environments, but the theory can only account for 7%--10% of the dispersion in SN Ia 56Ni mass, and thus luminosity. This is because the effect is dominant at metallicities significantly above solar, whereas we find that SN hosts have predominantly subsolar or only moderately above-solar metallicities. We also show that allowing for changes in O/Fe with the metallicity [Fe/H] does not have a major effect on the theoretical prediction of Timmes, Brown & Truran, so long as one is using the O/H as the independent variable. Age may have a greater effect than metallicity -- we find that the luminosity weighted age of the host galaxy is correlated with 56Ni yield, and thus more massive progenitors give rise to more luminous explosions. This is hard to understand if most SNe Ia explode when the primaries reach the Chandrasekhar mass. Finally, we test the findings of Gallagher et al., that the residuals of SNe Ia from the Hubble diagram are correlated with host galaxy metallicity, and we find no such correlation.
Type Ia supernovae (SNe) are the best standard candles available today in spite of an appreciable intrinsic variation of their luminosities at maximum phase, and of probably non-uniform progenitors. For an unbiased use of type Ia SNe as distance indi cators it is important to know accurately how the decline rate and colour at maximum phase correlate with the peak brightness. In order to calibrate the Hubble diagram of type Ia SNe, i.e. to derive the Hubble constant, one needs to determine the absolute brightness of nearby type Ia SNe. Globular cluster systems of early type Ia host galaxies provide suitable distance indicators. We discuss how Ia SNe can be calibrated and explain the method of Globular Cluster Luminosity Functions (GCLFs). At present, the distance to the Fornax galaxy cluster is most important for deriving the Hubble constant. Our present data indicate a Hubble constant of H_0=72+-4 km/s/Mpc. As an appendix, we summarise what is known about absolute magnitudes of Ias in late-type galaxies.
We have assembled a dataset of 165 low redshift, $z<$0.06, publicly available type Ia supernovae (SNe Ia). We produce maximum light magnitude ($M_{B}$ and $M_{V}$) distributions of SNe Ia to explore the diversity of parameter space that they can fill . Before correction for host galaxy extinction we find that the mean $M_{B}$ and $M_{V}$ of SNe Ia are $-18.58pm0.07$mag and $-18.72pm0.05$mag respectively. Host galaxy extinction is corrected using a new method based on the SN spectrum. After correction, the mean values of $M_{B}$ and $M_{V}$ of SNe Ia are $-19.10pm0.06$ and $-19.10pm0.05$mag respectively. After correction for host galaxy extinction, `normal SNeIa ($Delta m_{15}(B)<1.6$mag) fill a larger parameter space in the Width-Luminosity Relation (WLR) than previously suggested, and there is evidence for luminous SNe Ia with large $Delta m_{15}(B)$. We find a bimodal distribution in $Delta m_{15}(B)$, with a pronounced lack of transitional events at $Delta m_{15}(B)$=1.6 mag. We confirm that faster, low-luminosity SNe tend to come from passive galaxies. Dividing the sample by host galaxy type, SNe Ia from star-forming (S-F) galaxies have a mean $M_{B}=-19.20 pm 0.05$ mag, while SNe Ia from passive galaxies have a mean $M_{B}=-18.57 pm 0.24$ mag. Even excluding fast declining SNe, `normal ($M_{B}<-18$ mag) SNe Ia from S-F and passive galaxies are distinct. In the $V$-band, there is a difference of 0.4$ pm $0.13 mag between the median ($M_{V}$) values of the `normal SN Ia population from passive and S-F galaxies. This is consistent with ($sim 15 pm $10)% of `normal SNe Ia from S-F galaxies coming from an old stellar population.
401 - Mina Koleva 2011
We studied the stellar populations of 40 early-type galaxies using medium resolution long-slit spectroscopy along their major axes (and along the minor axis for two of them), from 10^7 Msol to 10^12 Msol (-9.2 > M_B > -22.4 mag). All the studied gala xies lie on the mass-metallicity and age-mass relations. The transition type dwarfs deviate from the latter relation having younger mean age, and the low-mass dwarf spheroidals have older ages, marking a discontinuity in the relation, possibly due to selection effects. In all mass regimes, the mean metallicity gradients are approximately -0.2 and the mean age gradients +0.1 dex per decade of radius. The individual gradients are widely spread: $ -0.1 < abla_{rm Age} < 0.4 $ and $-0.54 < abla_{[{rm Fe/H}]} < +0.2 $. We do not find evidence for a correlation between the metallicity gradient and luminosity, velocity dispersion, central age or age gradient. Likewise, we do not find a correlation between the age gradient and any other parameter in bright early-type galaxies. In faint early-types with $M_B gtrsim -17$ mag, on the other hand, we find a correlation between the age gradient and luminosity: the age gradient becomes more positive for fainter galaxies. We conclude that various physical mechanisms can lead to similar gradients and that these gradients are robust against the environmental effects. In particular, the gradients observed in dwarfs galaxies certainly survived the transformation of the progenitors through tidal harassment or/and ram-pressure stripping. The diversity of metallicity gradients amongst dwarf elliptical galaxies may reflect a plurality of progenitors morphologies. The dwarfs with steep metallicity gradients could have originated from blue compact dwarfs and those with flat profiles from dwarf irregulars and late type spirals. (Abridged)
Recent studies find that some early-type galaxies host Type II or Ibc supernovae (SNe II, Ibc). This may imply recent star-formation activities in these SNe host galaxies, but a massive star origin of the SNe Ib so far observed in early-type galaxies has been questioned because of their intrinsic faintness and unusually strong Ca lines shown in the nebular phase. To address the issue, we investigate the properties of early-type SNe host galaxies using the data with Galaxy Evolution Explore(GALEX) ultraviolet photometry, and the Sloan Digital Sky Survey (SDSS) optical data. Our sample includes eight SNe II and one peculiar SN Ib (SN 2000ds) host galaxies as well as 32 SN Ia host galaxies. The host galaxy of SN 2005cz, another peculiar SN Ib, is also analysed using the GALEX data and the NASA/IPAC Extragalactic Database (NED) optical data. We find that the NUV-optical colors of SN II/Ib host galaxies are systematically bluer than those of SN Ia host galaxies, and some SN II/Ib host galaxies with NUV-r colors markedly bluer than the others exhibit strong radio emission. We perform a stellar population synthesis analysis and find a clear signature of recent star-formation activities in most of the SN II/Ib host galaxies. Our results generally support the association of the SNe II/Ib hosted in early-type galaxies with core-collapse of massive stars. We briefly discuss implications for the progenitors of the peculiar SNe Ib 2000ds and 2005cz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا